Skip to main content
Log in

Magnetically controlled vertically emitting laser with anisotropic pumping

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A vertically emitting Faraday laser that is pumped by quantum wires or strongly anisotropic quantum dots is considered. As distinct from a similar laser on a quantum well or isotropic quantum dots, such a laser is extremely sensitive to external magnetic field (up to switching-off by magnetic field). This circumstance can be used for development of a rapidly tunable source of coherent radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Jiang and C. M. Soukoulis, Phys. Rev. B 59, 6159 (1999).

    Article  Google Scholar 

  2. S. Strauf, K. Hennessy, M. T. Rakher, et al., Phys. Rev. Lett. 96, 127404 (2006).

    Article  Google Scholar 

  3. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, Phys. Rev. B 65, 195306.

  4. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, Phys. Rev. Lett. 92, 123906 (2004).

    Article  Google Scholar 

  5. N. N. Ledentsov and Dzh. A. Lott, Usp. Fiz. Nauk 181, 884 (2011).

    Article  Google Scholar 

  6. K. Iga, IEEE J. Sel. Top. Quantum Electron. 6, 1201 (2000).

    Article  Google Scholar 

  7. C. J. Chang-Hasnain, J. Sel. Top. Quantum Electron. 6, 978 (2000).

    Article  Google Scholar 

  8. G. Steinle, H. Riechert, and A. Y. Egorov, Electron. Lett. 37, 93 (2001).

    Article  Google Scholar 

  9. W. Yuen, G. S. Li, R. F. Nabiev, et al., Electron. Lett. 36, 1121 (2000).

    Article  Google Scholar 

  10. F. Koyama, J. Lightwave Technol. 24, 4502 (2006).

    Article  Google Scholar 

  11. J. A. Lott, V. A. Shchukin, N. N. Ledentsov, et al., Electron. Lett. 47, 717 (2011).

    Article  Google Scholar 

  12. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits. Microwave and Optical Engineering (Wiley, New York, 1995).

    Google Scholar 

  13. H. J. Unold, S. W. Z. Mahmoud, R. Jager, et al., IEEE Photonics Technol. Lett. 12, 939 (2000).

    Article  Google Scholar 

  14. K. D. Choquette and R. E. Leibenguth, IEEE Photonics Technol. Lett. 6, 40 (1994).

    Article  Google Scholar 

  15. K. Panajotov, B. Nagler, G. Verschaffelt, et al., Appl. Phys. Lett. 77, 1590 (2000).

    Article  Google Scholar 

  16. T. Yoshikawa, T. Kawakami, H. Saito, et al., IEEE J. Quantum Electron. 34, 1009 (1998).

    Article  Google Scholar 

  17. H. Saito, K. Nishi, S. Sugou, and Y. Sugimoto, Appl. Phys. Lett. 71, 590 (1997).

    Article  Google Scholar 

  18. K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, J. Sel. Top. Quantum Electron. 1, 661 (1995).

    Article  Google Scholar 

  19. M. Sugisaki, H. -W. Ren, S. V. Nair, et al., Phys. Rev. B 59, R5300 (1999).

    Article  Google Scholar 

  20. A. P. Voitovich, Magnetooptics of Gas Laser (Nauka i Tekhnika, Minsk, 1984) [in Russian].

    Google Scholar 

  21. M. I. D’yakonov and S. A. Fridrikhov, Usp. Fiz. Nauk 90, 837 (1966).

    Google Scholar 

  22. A. D. May, P. Paddon, E. Sjerve, and G. Stéphan, Phys. Rev. A 53, 2829 (1996).

    Article  Google Scholar 

  23. C. Serrat, N. B. Abraham, M. M. San, et al., Phys. Rev. A 53, R3731 (1996).

    Article  Google Scholar 

  24. A. K. Jansen van Doom, M. P. Van Exter, M. Travagnin, and J. P. Woerdman, Opt. Commun. 133, 252 (1997).

    Article  Google Scholar 

  25. W. Van Haeringen, Phys. Rev. 158, 256 (1967).

    Article  Google Scholar 

  26. M. M. San, Q. Feng, and J. V. Moloney, Phys. Rev. A 52, 1728 (1995).

    Article  Google Scholar 

  27. M. Travagnin and M. P. Van Exter, A. K. Jansen Van Doorn, and J. P. Woerdmanet, Phys. Rev. A 54, 1647 (1996).

    Google Scholar 

  28. T. Erneux, J. Danckaert, K. Panajotov, and I. Veretennicoff, Phys. Rev. A 59, 4660 (1999).

    Article  Google Scholar 

  29. C. Masoller and N. B. Abraham, Phys. Rev. A 59, 3021 (1999).

    Article  Google Scholar 

  30. J.-M. Lamy, C. Levallois, A. Nakhar, et al., Phys. Status Solidi A 204, 1672 (2007).

    Article  Google Scholar 

  31. G. A. Lyubas and V. V. Bolotov, JETP Lett. 72, 205 (2000).

    Article  Google Scholar 

  32. A. C. Bartnik, A. L. Efros, W. K. Koh, et al., Phys. Rev. B 82, 195313 (2010).

    Article  Google Scholar 

  33. H.-Y. Chen, Y.-C. Yang, H.-W. Lin, et al., Opt. Express 16, 13465 (2008).

    Article  Google Scholar 

  34. C.-Y. Chen, J.-H. Huang, K.-Y. Lai, et al., Opt. Express 20, 2015 (2012).

    Article  Google Scholar 

  35. Ya. I. Khanin, Principles of Laser Dynamics (Nauka, Moscow, 1999) [in Russian].

    Google Scholar 

  36. A. N. Oraevskii, Kvantovaya Elektron. (Moscow) 29, 137 (1999).

    Google Scholar 

  37. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ., Cambridge, 1995; Fizmatlit, Moscow, 2000).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dorofeenko.

Additional information

Original Russian Text © A.A. Zyablovskii, A.V. Dorofeenko, A.A. Pukhov, A.P. Vinogradov, E.S. Andrianov, A.B. Granovskii, A.A. Lisyanskii, 2015, published in Radiotekhnika i Elektronika, 2015, Vol. 60, No. 1, pp. 92–101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyablovskii, A.A., Dorofeenko, A.V., Pukhov, A.A. et al. Magnetically controlled vertically emitting laser with anisotropic pumping. J. Commun. Technol. Electron. 60, 87–96 (2015). https://doi.org/10.1134/S1064226915010131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226915010131

Keywords

Navigation