Abstract
A novel algorithm for image matching based on recursive calculation of histograms of oriented gradients over several circular sliding windows and pyramidal image decomposition is presented. The algorithm gives good results for geometrically distorted and scaled scene images. The results of computer simulation obtained with the proposed algorithm are compared to those of available algorithms in terms of matching accuracy and processing time.
This is a preview of subscription content,
to check access.References
D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. 7th Int. Conf. on Computer Vision, Crete, 1999 (IEEE, New York, 1999), Vol. 2, pp. 1150–1157.
H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,” Comput. Vis. Image Underst. 110, 346–359 (2008).
E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient alternative to SIFT or SURF,” in Proc. IEEE Int. Conf. on Computer Vision, Barcelona, 2011 (IEEE, New York, 2011), pp. 2564–2571.
M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: binary robust independent elementary features,” in Proc. 11th Eur. Conf. on Computer Vision. (ECCV’10), Hersonissos Heraklion Crete, Greece, 2010 (Springer-Verlag, 2010), pp. 778–792.
R. Ortiz, “FREAK: Fast Retina Keypoint,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR’12, Providence, RI, June, 2012 (IEEE, New York, 2012), pp. 510–517.
V. H. Díaz-Ramírez and V. Kober, “Adaptive phaseinput joint transform correlator,” Appl. Opt. 46, 6543–6551 (2007).
Y. Ouerhani, M. Jridi, and A. Alfalou, and C. Brosseau, “Optimized preprocessing input plane GPU implementation of an optical face recognition technique using a segmented phase only composite filter,” Opt. Commun. 289, 33–44 (2013).
K. L. Rice, T. M. Taha, A. M. Chowdhury, A. A. S. Awwal, and D. L. Woodard, “Design and acceleration of phase-only filter-based optical pattern recognition for fingerprint identification,” Opt. Eng. 48(11), 117–206 (2009).
B. A. Zalesky and P. V. Lukashevich, “Scale invariant algorithm to match regions on aero or satellite images,” Proc. Pattern Recogn. Inf. Process. 11, 25–30 (2011).
N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Comput. Vis. Pattern Recogn. 1, 886–893 (2005).
W. K. Pratt, Digital Image Processing (Wiley, New York, 2007).
T. Lindeberg, “Scale-space theory: A basic tool for analysis structures at different scales,” J. Appl. Statis. 21, 225–270 (1994).
B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block motion vectors,” IEEE Trans. Circuits Syst. Video Technol. 3, 148–157 (1993).
J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders, The Amsterdam library of object images, International Journal of Computer Vision, 2005, vol. 61, no. 1, pp. 103–112, http://staff.science.uva.nl/aloi/
Li X. Rong and V. P. Jilkov, “Survey of maneuvering target tracking. Part I: Dynamic models,” IEEE Trans. Aerosp. Electron. Syst. 39, 1333–1364 (2003).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © D. Miramontes-Jaramillo, V.I. Kober, V.H. Díaz-Ramírez, V.N. Karnaukhov, 2014, published in Informatsionnye Protsessy, 2014, Vol. 14, No. 1, pp. 56–63.
Rights and permissions
About this article
Cite this article
Miramontes-Jaramillo, D., Kober, V.I., Díaz-Ramírez, V.H. et al. A novel image matching algorithm based on sliding histograms of oriented gradients. J. Commun. Technol. Electron. 59, 1446–1450 (2014). https://doi.org/10.1134/S1064226914120146
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1064226914120146