A coding technique for Q-frequency S-user gaussian channel


The paper addresses the problem of constructing an asynchronous multiple access system for a multiuser Q-frequency channel with additive white gaussian noise (AWGN). To solve the problem we propose a coding scheme for the channel. The major component of the scheme is non-binary low-density parity-check (LDPC) code. To increase the transmission rate we introduce the embedded modulation. The efficiency of the resulting multiple-access system is shown by simulations.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. J. Viterbi, “Very low rate convolutional codes for maximum theoretical performance of spread-spectrum multiple access channels,” IEEE J. Sel. Areas Commun. 8, 641–649 (1990).

    Article  Google Scholar 

  2. 2.

    A. Cohen, J. Heller, and A. J. Viterbi, “A new coding technique for asynchronous multiple access communication,” IEEE Trans. Commun. Technol. 19, 849–855 (1971).

    Article  Google Scholar 

  3. 3.

    D. S. Osipov, A. A. Frolov, and V. V. Zyablov, “Multiple access system for a vector disjunctive channel,” Probl. Inf. Transm. 48, 243–249 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  4. 4.

    V. R. Sidorenko and R. Fischer, “Low-complexity list decoding of Reed-Solomon coded pulse position modulation,” in Proc. 9th Int. ITG Conf. on Systems, Communication and Coding, Munich, Germany(SCC 2013), Jan. 21–24, 2013 (ITG, Munich, 2013).

    Google Scholar 

  5. 5.

    A. A. Frolov, V. V. Zyablov, V. R. Sidorenko, and R. Fischer, “On a multiple-access in a vector disjunctive channel,” in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Turkey, July, 2013 (IEEE, New York, 2013), pp. 211–215.

    Google Scholar 

  6. 6.

    W. Kautz and R. Singleton, “Nonrandom binary super-imposed codes,” IEEE Trans. Inf. Theory, 363–377 (1964).

    Google Scholar 

  7. 7.

    R. G. Gallager, Low-Density Parity-Check Codes (MIT Press, Cambridge, 1963).

    Google Scholar 

  8. 8.

    M. Davey and D. J. C. MacKay, “Low density parity check codes over GF(q),” IEEE Commun. Lett. 2, 165–167 (1998).

    Article  Google Scholar 

  9. 9.

    K. A. Kondrashov and V. B. Afanassiev, “Ordered statistics decoding for semi-orthogonal linear block codes over random non-Gaussian channels,” in Proc. 13th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT 2012), Pomorie, Bulgaria, June 15–21, 2012 (Institute of Mathematics and Informatics, Bulgaria BAS, 2012), pp. 192–196.

    Google Scholar 

  10. 10.

    A. A. Frolov and V. V. Zyablov, “Asymptotic estimation of the fraction of errors correctable by q-ary ldpc codes,” Probl. Inf. Transm. 46, 142–159 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. 11.

    L. Barnault and D. Declercq, “Fast Decoding Algorithm for LDPC over \(GF(2\hat q)\),” in Proc. Inf. Theory Workshop, Paris, France, March, 2003 (IEEE, New York, 2003), pp. 70–73.

    Google Scholar 

  12. 12.

    H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of LDPC codes over GF(q),” in Proc. IEEE Int. Conf. on Commun., Paris, France, June 20–24, 2004 (IEEE, New York, 2004), pp. 772–776.

    Google Scholar 

  13. 13.

    D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary LDPC Codes Over GF(q),” IEEE Trans. Commun. 55, 633–643 (2007).

    Article  Google Scholar 

  14. 14.

    Xiao-Yu Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular progressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory. 51, 386–398 (2005).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. A. Frolov.

Additional information

Published in Russian in Informatsionnye Protsessy, 2014, Vol. 14, No. 2, pp. 151–159.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frolov, A.A., Zyablov, V.V. A coding technique for Q-frequency S-user gaussian channel. J. Commun. Technol. Electron. 59, 1483–1488 (2014). https://doi.org/10.1134/S1064226914120055

Download citation


  • multiple access
  • asynchronous
  • nonbinary LDPC code
  • embedded modulation