Skip to main content
Log in

Secondary radiation of resonance perfectly conducting objects

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A method is proposed for calculating the secondary radiation characteristics (SRCs) of resonance perfectly conducting objects located in free space. The method is based on the solution of the magnetic-field integral equation and ensures elimination of resonances that are due to the eigen oscillations of the interior region of a perfectly conducting object and that appear as a consequence of numerical implementation. The calculated scattering characteristics of perfectly conducting objects of simple shapes (a sphere, a cylinder, an ellipsoid, a disk, and a cube) are compared to data of physical simulation and to results obtained with the help of other calculation techniques. The peculiarities of calculation of the scattering characteristics of the considered objects, including impulse responses, are analyzed. The parameters of the computational algorithm for calculating the SRCs of objects of complex shapes are determined with the use of the data obtained for model scatterers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ya. Ufimtsev, Method of Edge Waves in the Physical Theory of Diffraction (Sovetskoe Radio, Moscow, 1962; US Air Force Foreign Technology Division, 1–1154, 1962).

    Google Scholar 

  2. Computer Techniques for Electromagnetics, Ed. by R. Mittra (Pergamon, New York, 1973; Mir, Moscow, 1977).

    Google Scholar 

  3. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section (Artech House, Boston, 1993).

    Book  Google Scholar 

  4. Computer Simulation of Aerial Target Radar Scattering Recognition, Detection and Tracking, Ed. by Ya. D. Shirman (Artech House, Norwood, 2002).

    Google Scholar 

  5. L. A. L’vova, Radar Derectability of Aircrafts (RFYaTs-VNIITF, Snezhinsk, 2003) [in Russian].

    Google Scholar 

  6. P. Ya. Ufimtsev, Theory of Diffraction Edge Waves in Electromagnetics (BINOM, Laboratoriya znanii, Moscow, 2007) [in Russian].

    Google Scholar 

  7. O. I. Sukharevskii, V. A. Vasilets, S. V. Kukobko, et al., Scatteringof Electromagnetic Waves by Air and Ground-Based Objects (Khar’kovsk. Univ. Vozdushn. Sil, Kharkov, 2009) [in Russian].

    Google Scholar 

  8. S. M. Rao, D. R. Wilton, and A. W. Glisson, IEEE Trans. Antennas Propag. 30, 409 (1982).

    Article  Google Scholar 

  9. E. N. Vasil’ev, Excitation of Bodies of Revolution (Radio i Svyaz’, Moscow, 1987) [in Russian].

    Google Scholar 

  10. V. I. Dmitriev and E. V. Zakharov, Integral Equations in Boundary Value Problems of Electromagnetics (Mosk. Gos. Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  11. A. F. Peterson, Electromagnetics 10, 293 (1990).

    Article  Google Scholar 

  12. N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, IEEE Trans. Antennas Propag. 40, 634 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  13. Yu. K. Sirenko, I. V. Sukharevskii, O. I. Sukharevskii, and N. P. Yashina, Fundamental and Applied Problems of the Theory of Electromagnetic Wave Scattering (Krok, Kharkov, 2000) [in Russian].

    Google Scholar 

  14. B. Shanker, A. A. Ergin, K. Aygun, and E. Michielssen, IEEE Trans. Antennas Propag. 48, 1064 (2000).

    Article  MathSciNet  Google Scholar 

  15. J. M. Rius, E. Úbeda, and J. Parron, IEEE Trans. Antennas Propag. 49, 1550 (2001).

    Article  MATH  Google Scholar 

  16. L. Gürel and Ö. Ergül, IEEE Antennas and Wireless Propagation Lett. 4, 229 (2005).

    Article  Google Scholar 

  17. P. Ylä-Oijala, M. Taskinen, and J. Sarvas,, Prog. Electromagn. Res. 52, 81 (2005).

    Article  Google Scholar 

  18. A. M. Lerer, J. Commun. Technol. Electron. 51, 792 (2006).

    Article  Google Scholar 

  19. T. F. Eibert, IEEE Antennas Propag. Magaz. 49(2), 61 (2007).

    Article  Google Scholar 

  20. Ö. Ergül and L. Gürel, IEEE Trans. Antennas Propag. 55, 1103 (2007).

    Article  Google Scholar 

  21. W. C. Gibson, The Method of Moments in Electromagnetics (Chapman & Hall, Boca Raton, 2008).

    MATH  Google Scholar 

  22. Ç. Uluişik, G. Çakir, M. Çakir, and L. Sevgi, IEEE Antennas. Propag. Magaz. 50(1), 115 (2008).

    Article  Google Scholar 

  23. A. G. Kyurkchan and N. I. Smirnova, Elektromagn. Volny Elektron. Sist. 14(8), 4 (2009).

    Google Scholar 

  24. P. Ylä-Oijala, M. Taskinen, and S. Järvenpää,, in Proc. Int. Conf. Electromagnetics in Adv. Appl. (ICEAA’09), Torino, Sep. 14–18, 2009 (IEEE, New York, 2009).

    Google Scholar 

  25. I. O. Sukharevskii, G. S. Zalevskii, S. V. Nechitailo, and O. I. Sukharevskii, Elektromagn. Volny Elektron. Sist. 15(2), 42 (2010).

    Google Scholar 

  26. O. I. Sukharevskii, G. S. Zalevskii, S. V. Nechitailo, and I. O. Sukharevskii, Izv. Vyssh. Uchebn. Zaved., Radioelektronika 53(4), 51 (2010).

    Google Scholar 

  27. S. Yan, J.-M. Jin, and Z. Nie, IEEE Trans. Antennas Propag. 59, 1299 (2011).

    Article  MathSciNet  Google Scholar 

  28. E. Ubeda, J. M. Tamayo, and J. M. Rius, Prog. Electromagn. Res. 119, 85 (2011).

    Article  Google Scholar 

  29. E. Ubeda, J. M. Tamayo, J. M. Rius, and A. Heldring, IEEE Trans. Antennas Propag. 61, 1484 (2013).

    Article  MathSciNet  Google Scholar 

  30. N. M. Gyunter, Potential Theory and Its Application to the Fundamental Problems of Mathematical Physics (Gostekhteorizdat, Moscow, 1953; Ungar, New York, 1967) [in Russian].

    Google Scholar 

  31. I. M. Sobol’, Multidimentional Quadrature Formulae and Haar Functions (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  32. H. Hönl, A. W. Maue, and K. Westpfahl, Theorie der Beugung (Springer-Verlag, Berlin, 1961; Mir, Moscow, 1964).

    Google Scholar 

  33. V. M. Babich, M. A. Lyalinov, and V. E. Grikurov, The Sommerfeld-Malyuzhinets Method in the Diffraction Theory (St. Petersburg Univ., St. Petersburg, 2004) [in Russian].

    Google Scholar 

  34. R. W. P. King, Tai Tsun Wu, The Scattering and Diffraction of Waves (Harvard Univ. Press, Cambridge, 1959; Inostrannaya Literatura, Ìoscow, 1962).

    Book  Google Scholar 

  35. FEKO Comprehensive Electromagnetic Solutions. The Complete Antenna Design and Placement Solution http://www.feko.info.

  36. V. O. Kobak, Radar Reflectors (Sovetskoe Radio, Moscow, 1975) [in Russian].

    Google Scholar 

  37. R. P. Penno, G. A. Tile, and K. M. Pasala, Proc. IEEE 77, 815 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Zalevsky.

Additional information

Original Russian Text © G.S. Zalevsky, O.I. Sukharevsky, V.A. Vasilets, S.V. Nechitaylo, 2014, published in Radiotekhnika i Elektronika, 2014, Vol. 59, No. 12, pp. 1159–1171.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalevsky, G.S., Sukharevsky, O.I., Vasilets, V.A. et al. Secondary radiation of resonance perfectly conducting objects. J. Commun. Technol. Electron. 59, 1321–1332 (2014). https://doi.org/10.1134/S1064226914100106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226914100106

Keywords

Navigation