Skip to main content
Log in

Computational and experimental estimation of the autoelectron energy spectrum for multiple-tip cathode matrix made of glassy carbon

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The experimental and theoretical studies of the emission characteristics of a multiple-tip cathode matrix made of glassy carbon are discussed. The thermal conditions of microtips are calculated based on the experimental current-voltage characteristics of a cathode matrix and the effective emission cross sections. The dependences between the emitting-center temperature and the autoemission current are found, and the maximum temperatures corresponding to the boundary of the stable autoelectronic emission zone are determined. The distribution functions characterizing the total energy of autoelectrons are calculated allowing for the emitting-center temperatures. The dependences of the Fermi level shift and the autoelectron energy spectrum width on the temperature are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. E. Glukhova and A. S. Kolesnikova, J. Phys.: Conf. Ser 393, 012027 (2012).

    Article  Google Scholar 

  2. O. E. Glukhova, A. S. Kolesnikova, G. V. Torgashov, and Z. I. Buyanova, Fiz. Tverd. Tela 52, 1240 (2010).

    Google Scholar 

  3. N. I. Sinitsyn, Yu. V. Gulyaev, O. E. Glukhova, et al., Radiotekhnika, No. 4, 35 (2005).

    Google Scholar 

  4. N. I. Sinitsyn, Yu. V. Gulyaev, G. V. Torgashov, et al., Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din. 8(1), 52 (2000).

    Google Scholar 

  5. O. E. Glukhova, A. I. Zhbanov, I. P. Sinitsyn, and G. V. Torgashov, Radiotekh. Elektron. (Moscow) 44, 493 (1999).

    Google Scholar 

  6. K. S. Hazra, N. A. Koratkar, and D. S. Misra, Carbon 49, 4760 (2011).

    Article  Google Scholar 

  7. P. Hojati-Talemi, A. G. Kannan, and G. P. Simon, Carbon 50, 356 (2012).

    Article  Google Scholar 

  8. J. P. Kim, H. B. Chang, B. J. Kim, and J. S. Park, Thin Solid Films 528, 242 (2013).

    Article  Google Scholar 

  9. Y. A. Grigoriev, V. C. Semeonov, V. I. Shestyorkin, and Z. A. Yartseva, in Proc. 4th Int. Vacuum Microelectronics Conf. (IVMC-91), Nagahama, Aug. 22–24, 1991 (Business Center for Acad. Soc. Jap., Osaka, 1991), p. 194.

    Google Scholar 

  10. Yu. A. Grigor’ev, G. A. Rekhen, V. K. Semenov, and V. I. Shesterkin, Radiotekh. Elektron. (Moscow) 40, 1127 (1995).

    Google Scholar 

  11. Y. A. Grigoriev, A. I. Petrosyan, V. V. Penzyakov, V. G. Pimenov, et al., J. Vac. Sci. Technol., B: Microelectron. Nanometers 15, 503 (1997).

    Article  Google Scholar 

  12. Yu. A. Grigor’ev and V. I. Shesterkin, in Electronics and Microwave Devices (Proc. Sci. Eng. Conf. Saratov, Sept. 5–7, 2012) (Sarat. Univ., Saratov, 2012), p. 66 [in Russian].

    Google Scholar 

  13. N. A. Bushuev, V. I. Shesterkin, A. A. Burtsev, Yu. A. Grigor’ev, et al., Elektron. Tekh., Ser. 1: SVCh Tekh., No. 4 (519), 175 (2013).

    Google Scholar 

  14. A. A. Burtsev, Yu. A. Grigor’ev, D. S. Denisov, A. I. Petrosyan, et al., Elektron. Tekh., Ser. 1: SVCh Tekh., No. 4 (519), 183 (2013).

    Google Scholar 

  15. V. I. Shesterkin, A. N. Darmaev, D. A. Komarov, et al., in Proc. 18th Coordination Sci.-Tech. Seminar on Microwave Technics, Nizhni Novgorod, Sept. 4–6, 2013 (OAO Salyut, Nizhni Novgorod, 2013), p. 39.

    Google Scholar 

  16. V. M. Lobanov, Tech. Phys. 50, 1485 (2005).

    Article  Google Scholar 

  17. P. J. F. Harris, Philos. Mag. 84, 3159 (2004).

    Article  Google Scholar 

  18. V. I. Shesterkin, in Proc. All-Russ. Sci. Conf. “Problems of Microwave Electronics”, Moscow, Oct. 24–25, 2013 (MIEM NIU VShE, Ìoscow, 2013), p. 135.

    Google Scholar 

  19. Yu. V. Gulyaev, Yu. A. Grigor’ev, V. N. Korol’, and G. A. Rekhen, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din. 13(1–2), 88 (2005).

    MATH  Google Scholar 

  20. P. W. Hawkes and E. Kasper, Principles of Electron Optics, Vol. 2: Applied Geometrical Optics (Academic, London, 1989), p. 918.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shesterkin.

Additional information

Original Russian Text © V.I. Shesterkin, O.E. Glukhova, D.V. Ivanov, A.S. Kolesnikova, 2014, published in Radiotekhnika i Elektronika, 2014, Vol. 59, No. 8, pp. 782–787.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shesterkin, V.I., Glukhova, O.E., Ivanov, D.V. et al. Computational and experimental estimation of the autoelectron energy spectrum for multiple-tip cathode matrix made of glassy carbon. J. Commun. Technol. Electron. 59, 827–832 (2014). https://doi.org/10.1134/S1064226914080191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226914080191

Keywords

Navigation