Skip to main content
Log in

Numerical solution of the Schröbinger equation for an electron in a potential well of an arbitrary form

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A numerical model is proposed for the solution of the Schröbinger equation. The model is based on the scattering matrix of the solution region. The scattering matrix is formed from matrices of partial regions of a simple shape. The density of the self-emission current for a metal/vacuum potential barrier of an arbitrary form is calculated. The results of test calculation of electron transmission through a rectangular potential barrier with a relative error less than 0.001% as compared to the analytical solution are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Whaley, R. Duggal, C. M. Armstrong, et al., IEEE Trans. Electron Devices 56, 896 (2009).

    Article  Google Scholar 

  2. S. P. Morev, N. P. Aban’shin, B. I. Gorfinkel’, A. N. Darmaev, D. A. Komarov, A. E. Makeev, and A. N. Yakunin, J. Commun. Technol. Electron. 58, 357 (2013).

    Article  Google Scholar 

  3. N. A. Bushuev, V. I. Shesterkin, and A. A. Burtsev, Elektron. Tekh., Ser. 1: Elektron. SVCh, No. 4(519), 175 (2013).

    Google Scholar 

  4. R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London A 119,781, 173 (1928).

    Article  MATH  Google Scholar 

  5. M. I. Elinson and G. F. Vasilev, Self-Electron Emission (Fizmatlit, Moscow, 1958) [in Russian].

    Google Scholar 

  6. G. N. Fursei, Self-Electron Emission (Lan’, St. Petersburg, 2012) [in Russian].

    Google Scholar 

  7. A. V. Eletskii, Uspekhi Fiz. Nauk 180, 897 (2010).

    Article  Google Scholar 

  8. A. B. Petrin, JETP 108, 292 (2009).

    Article  Google Scholar 

  9. V. Semet, Ch. Adessi, and T. Capron, et al., Phys. Rev. B 75, 045430 (2007).

    Article  Google Scholar 

  10. Kalitkin, N.N., Numerical Methods (Nauka, Moscow, 1978).

    Google Scholar 

  11. E. L. Murphy and R. H. Good, Phys. Rev. 102, 1464 (1956).

    Article  Google Scholar 

  12. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964; Nauka, Moscow, 1978).

    Google Scholar 

  13. D. I. Trubetskov, A. G. Rozhnev, and D. V. Sokolov, Lectures on Microwave Vacuum Microelectronics (Gos-UNTs “Kolledzh”, Saratov, 1996) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Komarov.

Additional information

Original Russian Text © D.A. Komarov, S.P. Morev, A.N. Darmaev, A.Yu. Ryadnov, 2014, published in Radiotekhnika i Elektronika, 2014, Vol. 59, No. 8, pp. 799–803.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarov, D.A., Morev, S.P., Darmaev, A.N. et al. Numerical solution of the Schröbinger equation for an electron in a potential well of an arbitrary form. J. Commun. Technol. Electron. 59, 843–846 (2014). https://doi.org/10.1134/S1064226914080117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226914080117

Keywords

Navigation