Skip to main content
Log in

Numerical simulation of interaction processes in the electron-positron matter by the methods of the classical and quantum theories

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Numerical simulation of interaction processes in the electron-positron matter (EPM) is numerically simulated in the framework of the specific research area, gamma-electronics, which is concerned with the problem of creation and long existence of an EPM with extremely high energy, which is released in the process of delayed annihilation. Interaction processes in the EPM are studied by the methods of the classical large-particle model and a quantum model using macroscopic wave functions of electrons and positrons. In contrast to the point kinematic approach used in quantum electrodynamics, large particles are considered as deformed bunches of charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Kanavets, Electron-Positron Substance: From Positronium to Superliquid and Ball Lightning (Pedagogich. Obshchestvo Rossii, Moscow, 2009) [in Russian].

    Google Scholar 

  2. V. I. Gol’danskii, Physical Chemistry of Positron and Positronium (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  3. U. A. Arifov and P. U. Arifov, Physics of Slow Positrons (FAN, Tashkent, 1971) [in Russian].

    Google Scholar 

  4. A. A. Sokolov, Introduction to Quantum Electrodynamics (Fizmatlit, Moscow, 1958) [in Russian].

    Google Scholar 

  5. D. Bohm, Quantum Theory (Prentice-Hall, New York, 1951; Nauka, Moscow, 1965).

    Google Scholar 

  6. D. Pines, and P. Nozière, The Theory of Quantum Liquids, (Academic, New York, 1966; Mir, Moscow, 1967).

    Google Scholar 

  7. D. R. Tilley, J. Tilley, Superfluidity and Superconductivity (Van Nostrand Reinhold, New York, 1974; Mir, Moscow, 1977).

    Google Scholar 

  8. V. I. Kanavets, Yu. D. Mozgovoi, and S. A. Khritkin, J. Commun. Technol. Electron. 48, 687 (2003).

    Google Scholar 

  9. V. I. Kanavets, Yu. D. Mozgovoi, and S. A. Khritkin, J. Commun. Technol. Electron. 51, 339 (2006).

    Article  Google Scholar 

  10. V. I. Kanavets, Yu. D. Mozgovoi, and S. A. Khritkin, J. Commun. Technol. Electron. 55, 469 (2010).

    Article  Google Scholar 

  11. Yu. D. Mozgovoi, V. I. Kanavets, and S. A. Khritkin, in Proc. 14th IEEE Int. Vacuum Electronics Conf. (IVEC-2013), Paris, May 21–23, 2013 (IEEE, New York, 2013), p. 215.

    Google Scholar 

  12. Yu. D. Mozgovoi, V. I. Kanavets, and S. A. Khritkin, Proc. 14th IEEE Int. Vacuum Electronics Conf. (IVEC-2013), Paris, May 21–23, 2013 (IEEE, New York, 2013), p. 282.

    Google Scholar 

  13. Yu. D. Mozgovoi, V. I. Kanavets, and S. A. Khritkin, Proc. 14th IEEE Int. Vacuum Electronics Conf. (IVEC-2013), Paris, May 21–23, 2013 (IEEE, New York, 2013), p. 288.

    Google Scholar 

  14. S. P. Bugaev, V. I. Kanavets, V. I. Koshelev, and V. A. Cherepenin, Relativistic Multimode Microwave Oscillators (Nauka, Novosibirsk, 1991).

    Google Scholar 

  15. V. I. Kanavets, Yu. D. Mozgovoi, and A. I. Slepkov, Radiation of High-Power Electron Currents in Resonator Slow-Wave Structures (Mosk. Gos. Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  16. Yu. L. Klimontovich, Statistical Physics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  17. A. F. Aleksandrov and A. A. Rukhadze, Lectures on the Electrodynamics of Plasma-Like Media (Mosk. Gos. Univ., Moscow, 1999) [in Russian].

    Google Scholar 

  18. A. F. Aleksandrov and A. A. Rukhadze, Lectures on the Electrodynamics of Plasma-Like Media. Nonequilibrium Media (Mosk. Gos. Univ., Moscow, 2002) [in Russian].

    Google Scholar 

  19. D. B. Cassidy and Jr. A. P. Mills, Nature 449(7159), 195 (2007).

    Article  Google Scholar 

  20. V. E. Fortov, Extremal Substance Conditions of on Earth and in Space (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  21. W. Ebeling, W. D. Kraeft, and D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976; Mir, Moscow, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Mozgovoi.

Additional information

Original Russian Text © V.I. Kanavets, Yu.D. Mozgovoi, S.A. Khritkin, 2014, published in Radiotekhnika i Elektronika, 2014, Vol. 59, No. 8, pp. 836–842.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanavets, V.I., Mozgovoi, Y.D. & Khritkin, S.A. Numerical simulation of interaction processes in the electron-positron matter by the methods of the classical and quantum theories. J. Commun. Technol. Electron. 59, 877–883 (2014). https://doi.org/10.1134/S1064226914080105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226914080105

Keywords

Navigation