Skip to main content
Log in

Specific features of static and dynamic conduction of a composite film containing metal nanogranules in dielectric matrix

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Static conduction and reflection of electromagnetic waves from thin films of granulated amorphous metal-insulator nanocomposites are experimentally studied for a wide range of concentrations of the metal phase. It is demonstrated that the dynamic conductivity in the microwave range is several times greater than the static conductivity measured at dc current. Capacitive shunting, effective permittivity, and intracluster currents are used to interpret the results. Recommendations for further experiments are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Suzdalev, Nanotechnology. Physicochemistry of Nanoclusters, Nanostructures and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  2. M. Rieth, Nano-Engineering in Sciece and Technology (World Scientific Publishing Company, Singapore, 2003; NITs Reg. Khaot. Dinam., Moscow-Izhevsk, 2005).

    Book  Google Scholar 

  3. Yu. E. Kalinin, A. N. Remizov, and A. V. Sitnikov, Phys. Solid State 46, 2146 (2004).

    Article  Google Scholar 

  4. L. N. Kotov, V. K. Turkov, V. S. Vlasov, et al., Mater. Sci. Eng. 442, 352 (2006).

    Article  Google Scholar 

  5. Yu. E. Kalinin, L. N. Kotov, S. N. Petrunev, and A. V. Sitnikov, Izv. Akad. Nauk, Ser. Fiz. 69, 1195 (2005).

    Google Scholar 

  6. L. N. Kotov, Yu. Yu. Efimets, V. S. Vlasov, et al., Adv. Mat. Rep. 47–50, 706 (2008).

    Article  Google Scholar 

  7. A. V. Ivanov, Yu. E. Kalinin, A. V. Nechaev, and A. V. Sitnikov, Phys. Solid State 51, 2474 (2009).

    Article  Google Scholar 

  8. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973).

    Article  Google Scholar 

  9. E. Z. Meilikhov, Zh. Eksp. Teor. Fiz. 115, 1484 (1999).

    Google Scholar 

  10. B. Abeles, R. W. Cohen, and G. W. Cullen, Phys. Rev. Lett. 17, 632 (1966).

    Article  Google Scholar 

  11. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973).

    Article  Google Scholar 

  12. E. Cuevas, M. Ortuno, and J. Ruiz, Phys. Rev. Lett. 71, 1871 (1993).

    Article  Google Scholar 

  13. L. V. Lutsev, T. K. Zvonareva, and V. M. Lebedev, Tech. Phys. Lett. 27, 659 (2001).

    Article  Google Scholar 

  14. L. V. Lutsev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Phys. Solid State 44, 1889 (2002).

    Article  Google Scholar 

  15. L. V. Lutsev, Phys. Solid State 44, 102 (2002).

    Article  Google Scholar 

  16. L. V. Lutsev and S. V. Yakovlev, J. Appl. Phys. 83, 7330 (1998).

    Article  Google Scholar 

  17. L. V. Lutsev and S. V. Yakovlev, in New Magnetic Materials for Microelectronics (NMMM-2000) (Proc. 17th Int. School-Seminar, Moscow, June 20–23, 2000) (URSS-MGU, Moscow, 2000), pp. 254–256.

    Google Scholar 

  18. L. V. Lutsev, S. V. Yakovlev, and V. I. Siklitskii, Phys. Solid State 42, 1139 (2000).

    Article  Google Scholar 

  19. V. C. Vlasov, N. N. Gushchin, L. N. Kotov, et al., in Electromagnetic Field and Materials (Proc. 19th Int. Conf. Firsanovka, Moscow Reg., Nov. 18–20, 2011) (MEI, Moscow, 2003), p. 194.

    Google Scholar 

  20. I. V. Antonets, L. I. Kotov, S. V. Nekipelov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 49, 1164 (2004).

    Google Scholar 

  21. I. V. Antonets, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 51, 1394 (2006).

    Article  Google Scholar 

  22. I. V. Antonets, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 53, 851 (2008).

    Article  Google Scholar 

  23. I. V. Antonets, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 52, 379 (2007).

    Article  Google Scholar 

  24. I. V. Antonets, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 55, 121 (2010).

    Article  Google Scholar 

  25. I. V. Antonets and V. I. Shcheglov, Wave Propagation through Thin Layers and Films (Syktyvkar. Gos. Univ., Syktyvkar, 2010) [in Russian].

    Google Scholar 

  26. I. V. Antonets and V. I. Shcheglov, Wave Propagation through Sandwich-Like Structures, Vol. 1: Direct Methods (Syktyvkar. Gos. Univ., Syktyvkar, 2011) [in Russian]

    Google Scholar 

  27. D. V. Sivukhin, General Course of Physics, Vol. 3: Electricity (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  28. N. A. Parfent’eva and M. V. Fomina, Correct Solutions to Problems of Physics (Mir, Moscow, 2001) [in Russian].

    Google Scholar 

  29. I. T. Goronovskii, Yu. P. Nazarenko, and E. F. Nekryach, Brief Handbook of Chemistry (Naukova Dumka, Kiev, 1974).

    Google Scholar 

  30. Physical Encyclopedia (Sov. Entsiklopediya, Moscow, 1990), Vol. 2, p. 259.

  31. V. V. Nikol’skii and T. I. Nikol’skaya, Electrodynamics and Radiopropagation (Nauka, Moscow, 1989; Springer-Verlag, New York, 1984).

    Google Scholar 

  32. G. A. Kraftmakher, V. V. Meriakri, A. Ya. Chervonenkis, and V. I. Shcheglov, Zh. Eksp. Teor. Fiz. 63, 1353 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Vlasov.

Additional information

Original Russian Text © V.S. Vlasov, L.N. Kotov, V.G. Shavrov, V.I. Shcheglov, 2014, published in Radiotekhnika i Elektronika, 2014, Vol. 59, No. 9, pp. 882–896.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, V.S., Kotov, L.N., Shavrov, V.G. et al. Specific features of static and dynamic conduction of a composite film containing metal nanogranules in dielectric matrix. J. Commun. Technol. Electron. 59, 920–932 (2014). https://doi.org/10.1134/S1064226914070092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226914070092

Keywords

Navigation