Skip to main content
Log in

Gibbs random fields on a lattice: Definitions, existence, uniqueness, and phase transitions (a review of proceedings of the seminar on statistical physics at the faculty of mechanics and mathematics of the Moscow state university in 1962–1994)

  • Mathematical Models and Computational Methods
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The Moscow Grand Seminar on Statistical Physics is one of the first seminars in the world devoted to rigorous methods in statistical physics. The achievements of the seminar can be appreciated in full measure from publications by the leaders of the seminar (R.L. Dobrushin, V.A. Malyshev, R.A. Minlos, Ya.G. Sinai). This paper presents a review (far from complete) of the proceedings of the seminar. The emphasis is made on the fundamental definitions and most important results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Minlos, “Limit Gibbs distribution,” Funkts. Analiz Prilozh. 1(2), 60–73 (1967).

    MathSciNet  Google Scholar 

  2. R.A. Minlos, “Regularity of the limit Gibbs distribution,” Funkts. Analiz Prilozh. 1(3), 40–53 (1967).

    MathSciNet  Google Scholar 

  3. R. A. Minlos, Introduction to Mathematical Statistical Physics, AMS Univ. Lect. 19 (1999).

  4. R. L. Dobrushin. “Description of a random field with the help of conditional probabilities and conditions of its regularity,” Teor. Veroyatn. Primen. 13, 201–229 (1968).

    Google Scholar 

  5. R. L. Dobrushin, “Gibbs random fields for lattice systems with pairwise interaction,” Funkts. Analiz Prilozh. 2(4), 31–43 (1968).

    Google Scholar 

  6. R. L. Dobrushin, “The problem of the uniqueness of the Gibbs random field and the problem of phase transitions,” Funkts. Analiz Prilozh. 2(4), 44–57 (1968).

    Google Scholar 

  7. R. L. Dobrushin, “Gibbs random fields: the general case,” Funkts. Analiz Prilozh. 3(1), 27–35 (1969).

    MathSciNet  Google Scholar 

  8. D. Lanford, and D. Ruelle, “Observables at infinity and states with short range correlations in statistical mechanics,” Commun. Math. Phys. 13, 174–215 (1969).

    Article  MathSciNet  Google Scholar 

  9. R. L. Dobrushin, “Gibbs random fields for particles without a solid core,” Teor. Mat. Fiz. 4, 101–118 (1970).

    Article  MATH  Google Scholar 

  10. R. L. Dobrushin, “Specification of a system of random quantities with the help of conditional distributions,” Teor. Veroyatn. Primen. 15, 469–497 (1970).

    Google Scholar 

  11. R. L. Dobrushin, “The Gibbs state describing coexistence of phases for the 3D Ising model,” Teor. Veroyatn. Primen. 17, 619–639 (1972).

    Google Scholar 

  12. R. L. Dobrushin, “Analyticity of correlation functions in one-dimensional classical systems with slowly decreasing potentials,” Commun. Math. Phys. 32, 269–289 (1973).

    Article  MathSciNet  Google Scholar 

  13. R. L. Dobrushin, “Conditions for the absence of phase transitions in one-dimensional classical systems,” Mat. Sb. 93, 29–49 (1974).

    MathSciNet  Google Scholar 

  14. R. L. Dobrushin and V. M. Gertsik, “The Gibbs conditions in a lattice model with two-step interaction,” Funkts. Analiz Prilozh. 8(3), 12–25 (1974).

    Google Scholar 

  15. R. L. Dobrushin, and S. B. Shlosman, “Absence of Breakdown of continouos symmetry in 2D models of statistical physics,” Commun. Math. Phys. 42, 31–40 (1978).

    Article  MathSciNet  Google Scholar 

  16. R. L. Dobrushin and R. A. Minlos, Investigation of the Properties of Generalized Gaussian Random Fields., Problems of Mechanics and Mathematical Physics (Nauka, Moscow, 1976), pp. 117–165 [in Russian].

    Google Scholar 

  17. R. L. Dobrushin and R. A. Minlos, “Construction of a one-dimensional quantum field with the help of a continuous Markovian field,” Funkts. Analiz Prilozh. 7(4), 88–89 (1979).

    Google Scholar 

  18. R. L. Dobrushin. “Gaussian random fields-Gibbsian point of view Multicomponent random systems,” Adv. Prob. Relat. Topics 6, 119–152 (1980).

    Google Scholar 

  19. R. L. Dobrishin and E. A. Pechersky, A Criterion of the Uniqueness of Gibbsian Fields in Non-compact Case Probability Theory and Mathematical Statistics. Lecture Notes in Mathematics (Springer, Berlin, 1983), Vol. 1021, pp. 97–110.

    Google Scholar 

  20. R. L. Dobrushin and S. B. Shlosman, “Competly analitical Gibbs fields. Constructive criterion for the uniquenes of Gibbs fields,” Stat. Phys. Dynamic. Syst. Rigorous Results Progress Phys. 10, 371–403 (1985).

    Article  MathSciNet  Google Scholar 

  21. R. L. Dobrushin. “A new approach to the analysis of Gibbs perturbations of Gaussian fields,” Selecta Math. Soc., No. 3, 221–277 (1988).

    Google Scholar 

  22. V. A. Malyshev, “Cluster decompositions in lattice models of statistical physics and the quantum field theory,” Usp. Mat. Nauk 35(2), 3–53 (1980).

    MathSciNet  Google Scholar 

  23. Y. M. Park. “The cluster expansion for classical and quantum lattice systems,” J. Stat. Phys. 27, 553–576 (1982).

    Article  MATH  Google Scholar 

  24. V. A. Malyshev and R. A. Minlos, Gibbs Random Fields (Method of Cluster Decompositions) (Nauka, Moscow, 1985) [in Russian]

    Google Scholar 

  25. R. L. Dobrushin, Perturbation methods in the theory of Gibbsian fields in Lectures in Mathematics (Springer-Verlag, Berlin, 1996), Vol. 1648, pp. 1–66.

    Google Scholar 

  26. J. Glimm and A. Jaffe, Quantum Physics-a Functional Integral Point of View (J. Glimm, and A. Jaffe, Springer-Verlag, New York, 1981).

  27. E. Nelson, Probability Theory and Euclidean Field Theory. Constructive Quantum Field Theory (Springer-Verlag, New York, 1979).

    Google Scholar 

  28. G. Gruber and H. Kunz, “Ceneral properties of polymer systems,” Commun. Math. Phys. 22, 133–161 (1971).

    Article  MathSciNet  Google Scholar 

  29. P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968; Nauka, Moscow, 1977).

    MATH  Google Scholar 

  30. R. L. Dobrushin and S. B. Shlosman, “Constructive criterion for uniqueness of Gibbs fields. Statistical Physics and Dynamical Systems Rigogous results,” Prog. Phys. 10, 347–370 (1985).

    MathSciNet  Google Scholar 

  31. R. L. Dobrushin and S. B. Shlosman, “Completly Analitical interaction: constructive description,” J. Stat. Phys. 23, 983–1004 (1987).

    Article  MathSciNet  Google Scholar 

  32. R. L. Dobrushun and R. A. Minlos, “An investigation of the properties of generalized Gaussian random fields,” Selecta Math. Sov., 1, 215–261 (1981).

    Google Scholar 

  33. R. L. Dobrushun and R. A. Minlos, “Polynomials of linear random functions,” Usp. Mat. Nauk 32(2), 67–122 (1977).

    Google Scholar 

  34. S. A. Pirogov and Ya. G. Sinai, “Ground states in 2D boson quantumfield theory,” Ann. Phys. 109, 393–400 (1977).

    Article  MathSciNet  Google Scholar 

  35. F. J. Dyson, “Existence of a phase transition in onedimensional Ising ferromagnet,” Commun. Math. Phys. 12, 901–1007 (1971).

    Article  Google Scholar 

  36. P. M. Bleher and Ja. G. Sinai, “Investigation of the Critical Point in Models of the Type of Dyson’s Hierarchical Models,” Commun. Math. Phys. 33, 23–42 (1973).

    Article  MathSciNet  Google Scholar 

  37. P. M. Bleher and Ya. G. Sinai, Critical Indices for Dyson’s Asymptotically-Hierarchical Models, Commun. Math. Phys. 45, 247–278 (1975).

    Article  MathSciNet  Google Scholar 

  38. P. M. Bleher and P. Major, “Critical Phenomena and Universal Exponents in Statistical Physics. On Dyson’s Hierarchical Model,” Ann. Prob. 15, 431–477 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  39. R. L. Dobrushin. “Conditions for the absence phase transitions in one-dimensional classical systems,” Mat. Sb. 93, 29–49 (1974).

    MathSciNet  Google Scholar 

  40. R.L. Dobrushin, I. Kolafa, and S.B. Shlosman. “Phase diagram of the two-dimensional Ising antiferromagnet (computer assisted proof),” Commun. Math. Phys. 102, 89–103 (1985).

    Article  MathSciNet  Google Scholar 

  41. R. L. Dobrishin and S. B. Shlosman. “Phase corresponding to minima of the local energy,” Selecta Math. Soviet, 1, 317–338 (1981).

    MathSciNet  Google Scholar 

  42. R. L. Dobrushin and S. B. Shlosman, Large and Moderate Deviations in the Ising Model Probability Contributions in Statistical Mechanics, Ed. by R. L. Dobrushin (AMS, Providence, 1994), pp. 91–219.

  43. N. D. Mermin, “Absence of ordering in certain classical systems,” J. Math. Phys. 8, 1061–1064 (1967).

    Article  Google Scholar 

  44. J. Frohlich, B. Simon, and T. Spenser, “Infrared Bounds. Phase transitions and continous symmetry breakdown,” Commun. Math. Phys. 50, 79–95 (1976).

    Article  Google Scholar 

  45. R. Peierls “Ising’s model of ferromagnetism,” Proc. Cambridge Phil. Soc. 32, 477–481 (1936).

    Article  MATH  Google Scholar 

  46. R. Griffiths, “Peierls proof of spontaneous magnitization of a 2D Ising ferromagnet,” Phys. Rev. A 136, 437–439 (1964).

    Article  Google Scholar 

  47. F. A. Berezin and Ya. G. Sinai, “Existence of a phase transition in a lattice gas with attraction between particles,” Tr. Mosk. Mat. Obshch. 17, 197 (1967).

    Google Scholar 

  48. R. L. Dobrushin, “Existence of a phase transition in two- and three-dimensional Ising models,” Teor. Veroyatn. Primen. 10, 209–230 (1965).

    MathSciNet  Google Scholar 

  49. R. L. Dobrushin, “Existence of phase transitions in models of a lattice gas,” in Proc. 5th Berkeley Sympos. Math. Statist. and Prob., 1966 (Univ. of Calif. Press, Berkeley, 1966), Vol. 3, pp. 73–87.

    Google Scholar 

  50. R.A. Minlos and Ya.G. Sinai, “New results on phase transitions of the first kind in lattice systems,” Tr. Mosk. Mat. Obshch. 17, 213–242 (1967).

    Google Scholar 

  51. R. A. Minlos and Ya. G. Sinai. “The phenomenon of phase separation in certain lattice models. I,” Mat. Sb. 73, 375–448, (1967).

    MathSciNet  Google Scholar 

  52. R. A. Minlos and Ya. G. Sinai, “The phenomenon of phase separation in certain lattice models. II,” Tr. Mosk. Mat. Obshch. 19, 113–178, (1968).

    MathSciNet  Google Scholar 

  53. D. G. Martirosyan. “On the estimate from above of the number of periodic Gibbs conditions for the model of lattice gas,” Usp. Mat. Nauk 30, 181–182 (1975).

    Google Scholar 

  54. Nasr Ali, “Gibbs random fields for the Izing Model,” Tr. Mosk. Mat. Obshch. 32, 187–209 (1975).

    Google Scholar 

  55. V. M. Gertsik, “Conditions for the nonuniqueness of the Gibbs state for lattice models with the finite interaction potential,” Izv. AN SSSR, Ser. Mat. 40, 448–462 (1976).

    MATH  Google Scholar 

  56. E. A. Pechersky, “The peierls condition (or GPS-condition) not always statis field,” Sel. Math. Sov. 3, 87–91 (1983/1984).

    MathSciNet  Google Scholar 

  57. S. A. Pirogov and Ya. G. Sinai, “Phase diagrams of classical lattice systems. I,” Teor. Mat. Fiz. 25 358–369 (1975); S. A. Pirogov, and Ya. G. Sinai, “Phase diagrams of classical lattice systems. II,” Teor. Mat. Fiz. 26 61–76 (1976).

    Article  MathSciNet  Google Scholar 

  58. V. A. Malyshev, “Phases transitions in classical Heisenberg ferromagnets with arbitary parameter of anisotropy,” Commun. Math. Phys. 40(1), 75–80 (1975).

    Article  MathSciNet  Google Scholar 

  59. V. A. Malyshev, “Complete cluster expansion for weakly coupled Gibbs random fields,” in Meny Component Systems (Springer-Verlag, 1979).

    Google Scholar 

  60. V. A. Malyshev and I. Nicolaev, “Uniqueness of Gibbs fields via cluster expansions,” J. Stat. Phys. 35, 375–379 (1984).

    Article  MATH  Google Scholar 

  61. V. A. Malyshev, R. A. Minlos, E. N. Petrova, and Yu. A. Terletskii, “Generalized contour models,” Itogi nauki tekh. 18, 3–51 (1981).

    Google Scholar 

  62. V. A. Malyshev and Yu. A. Terletskii, “The limit theorem for noncommutative fields,” Vestn. MGU, ser. 1: Mekh.-Mat., No. 3, 47–51 (1978).

    Google Scholar 

  63. R. L. Dobrushin and M. Zagradnic, “Phase diagram for continuous-spin models: an extension of the Pirogov-Sinai theory, Mathematical problems of statistical mechanics and dynamics,” Mat. Appl. 6, 1–123 (1986).

    Google Scholar 

  64. Ya. G. Sinai, Theory of Phase Transitions (Rigorous Results) (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  65. E. N. Petrova, “Low-temperature decompositions in the Z 1-model,” in Mathematical Models of Statistic Physics (Tyumensk. Univ., Tyumen’, 1982), pp. 79–85.

    Google Scholar 

  66. F. F. Galeb, “The existence of the infinite number of phases in certain models of statistical physics,” Tr.Mosk. Mat. Obshch. 44, 109–123 (1982).

    MathSciNet  Google Scholar 

  67. M. I. Fisher and M. W. Selke, “Low temperature energy of ANNNI-model near its multiphase point,” Phil., Transactions Royal Soc. 302, 1, 1981.

    Article  MathSciNet  Google Scholar 

  68. E. I. Dinaburg, A. E. Masel’, and Ya. G. Sinai, “The ANNNI model and contour model with interaction,” in Math. Phys. Rev. Sov. Sci. Rev. set C, Ed. by S. P. Novikov (Cordon and Breach, New York, 1986), Vol. 6.

    Google Scholar 

  69. R. L. Dobrushin, R. K. Kotecky, and S. B. Shlosman, Wulf Construction. A Global Shape from Local Interaction (AMS, Providence, 1992), Vol. 104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Minlos.

Additional information

Original Russian Text © R.A. Minlos, E.A. Pecherskii, S.A. Pirogov, 2013, published in Informatsionnye Protsessy, 2013, Vol. 13, No. 2, pp. 141–170.

A brief version of this review was published in Eur. Phys. J. H, 2012, vol. 37, no. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minlos, R.A., Pecherskii, E.A. & Pirogov, S.A. Gibbs random fields on a lattice: Definitions, existence, uniqueness, and phase transitions (a review of proceedings of the seminar on statistical physics at the faculty of mechanics and mathematics of the Moscow state university in 1962–1994). J. Commun. Technol. Electron. 59, 576–594 (2014). https://doi.org/10.1134/S106422691406014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422691406014X

Keywords

Navigation