Skip to main content
Log in

Diffraction of a cylindrical wave by a perfectly conducting cylinder enclosed in a metamaterial shell with a negative refractive index

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The problem of diffraction of a plane (cylindrical) wave by a perfectly conducting cylinder enclosed in a metamaterial shell is rigorously solved. The influence of the geometric dimensions of the shell, the value of the negative refractive index of the metamaterial medium, and the position of a cylindrical wave source on the field structure in the near zone of the scatterer is investigated. It is found that, in the quasi-optical range of the problem parameters, this structure does not exhibit ideal focusing. It is shown that, there are two types of caustics inside the shell. The first type is related with rays reflected by the surface of the interior cylinder and has one cusp point, and the second type is formed by the geometric-optics rays that are refracted by the outer boundary of the shell and do not fall on the surface of the interior perfectly conducting cylinder. The spatial distribution of the total field amplitude and of the equal-amplitude lines in the near zone of the scatterer is reported. The obtained numerical results are correctly interpreted from the physical viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1967).

    Article  Google Scholar 

  2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  Google Scholar 

  3. A. Sihvola, Metamaterials 1(1), 2 (2007).

    Article  Google Scholar 

  4. V. Veselago, L. Braginsky, and V. Shklover, and C. J. Hafner, J.Comput. Theor. Nanosci. 3, 189 (2006).

    Google Scholar 

  5. N. V. Kisel’ and A. N. Lagar’kov, Elektromagn. Volny Elektron. Sist. 7(7), 55 (2002).

    Google Scholar 

  6. A. P. Anyutin, J. Radioelectron, No. 7 (2007); http://ire/cplire.ru/jre/jul07/5/text.html.

    Google Scholar 

  7. A. D. Shatrov, J. Commun. Technol. Electron. 52, 842 (2007).

    Article  Google Scholar 

  8. A. P. Anyutin, J. Commun. Technol. Electron. 53, 387 (2008).

    Article  Google Scholar 

  9. A. P. Anyutin, J. Commun. Technol. Electron. 53, 1323 (2008).

    Article  Google Scholar 

  10. A. B. Petrin, JETP 106, 963 (2008).

    Article  Google Scholar 

  11. A. P. Anyutin, J. Commun. Technol. Electron. 54, 982 (2009).

    Article  Google Scholar 

  12. V. P. Mal’tsev and A. D. Shatrov, J. Commun. Technol. Electron. 55, 278 (2010).

    Article  Google Scholar 

  13. A. P. Anyutin, J. Commun. Technol. Electron. 55, 132 (2010).

    Article  Google Scholar 

  14. V. A. Borovikov and B. E. Kinber, Geometric Theory of Diffraction (Svyaz’, Moscow, 1978) [in Russian].

    Google Scholar 

  15. A. S. Kryukovskii, D. S. Lukin, and D. V. Rastyagaev, J. Commun. Technol. Electron. 50, 1129 (2005).

    Google Scholar 

  16. A.P. Anioutin, A. G. Kyurkchan, and S. A. Minaev, J. Quant. Spectrosc. Radiat. Transf. 79–80, 509 (2003).

    Article  Google Scholar 

  17. A. G. Kyurkchan, S. A. Minaev, and A. L. Soloveichik, J. Commun. Technol. Electron. 46, 615 (2001).

    Google Scholar 

  18. A. P. Anyutin, J. Commun. Technol. Electron. 56, 1029 (2011).

    Article  Google Scholar 

  19. A. P. Anyutin, J. Commun. Technol. Electron. 58, 101 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Anyutin.

Additional information

Original Russian Text © A.P. Anyutin, 2014, published in Radiotekhnika i Elektronika, 2014, Vol. 59, No. 1, pp. 37–45.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anyutin, A.P. Diffraction of a cylindrical wave by a perfectly conducting cylinder enclosed in a metamaterial shell with a negative refractive index. J. Commun. Technol. Electron. 59, 31–39 (2014). https://doi.org/10.1134/S106422691401001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422691401001X

Keywords

Navigation