Skip to main content
Log in

A modular approach to the communication protocol and standard for multimedia information: A review

  • Information Technology in Engineering Systems
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The paper focuses on a modular approach to design of a communication protocol and an MPEG-like standard for multimedia information processing. Generally, the following basic problems can be considered: (i) selection, (ii) composition, and (iii) combinatorial evolution and forecasting. Here, the composition problem is examined. The ZigBee Protocol for wireless sensor networks is studied as an example for the modular design. A generalized MPEG-like standard is considered as a representative example as well. Morphological (modular) system design is used for composition of the elements (components) of the protocol/standard. The solving process is based on Hierarchical Morphological Multicriteria Design (HMMD): (i) multicriteria selection of alternatives for system components, (ii) synthesis of the selected alternatives into a resultant combination. Numerical examples illustrate the design process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. An, H. K. Pung, and L. Zhou, “Design and implementation of a dynamic protocol framework,” Comput. Commun. 29, 1309–1315 (2006).

    Article  Google Scholar 

  2. P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Cotta, and Y. F. Hu, “Wireless sensor network: A survey on the state of the art and the 802.15.4 and ZigBee standards,” Comput. Commun. 30, 1655–1695 (2007).

    Article  Google Scholar 

  3. A. Boukerche, B. Turgut, N. Aydin, M. Z. Ahmad, L. Boloni, and D. Turgut, “Routing protocols in ad hoc networks: survey,” Comput. Networks 55, 3032–3080 (2011).

    Article  Google Scholar 

  4. R.-S. Chang, W.-Y. Chen, and Y.-F. Wen, “Hybrid wireless network protocols,” IEEE Trans. Veh. Technol. 52, 1099–1109 (2003).

    Article  Google Scholar 

  5. H. Chen, C. Zhou, X. Huang, Y. Qing, and Y. Shi, “Management of the reconfigurable proocol stack based on SDL for networked control systems,” Inf. Technol. J. 9, 849–863 (2010).

    Article  Google Scholar 

  6. L. Chiariglione, “The development of an integrated audiovisual coding standard: MPEG,” Proc. IEEE 83, 151–157 (1995).

    Article  Google Scholar 

  7. L. Chiariglione, “MPEG and multimedia communications,” IEEE Trans. Circuits Syst. Video Technol. 7, 5–18 (1997).

    Article  Google Scholar 

  8. C. E. Fogg, D. J. Le Gall, J. L. Mitchell, and W. B. Pennebaker, (Eds.), MPEG Video. Compression Standard (Kluwer, Boston, 2002).

    Google Scholar 

  9. V. Gazis, N. Alanistioti, and L. Merakos, “Metadata design for reconfigurable protocol stacks in system beyond 3G,” Wireless Personal Commun. 36(1), 1–28 (2006).

    Article  Google Scholar 

  10. D. T. Hoang and J. S. Vitter, Efficient Algorithms for MPEG Video Compression (Wiley, New York, 2002).

    Google Scholar 

  11. F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stutzle, “ParamILS: an automatic algorithm configuration framework,” J. Artif. Intell. Res. 36(1), 267–306 (2009).

    MATH  Google Scholar 

  12. C. E. Jones, K. M. Sivalingam, P. Agarwal, and J. C. Chen, “A survey of energy efficient network protocols for wireless networks,” Wireless Networks 7, 343–358 (2001).

    Article  MATH  Google Scholar 

  13. E. Kamensky and O. Hadar, “Multiparameter method for analysis and selection of motion estimation algorithms for video compression,” Multimedia Tools Appl. 38(1), 119–146 (2008).

    Article  Google Scholar 

  14. H. Karl and A. Willig, Protocols and Architecture for Wireless Sensor Networks (Wiley, New York, 2007).

    Google Scholar 

  15. E. Kirci, E. K. Kuban, and N. K. Cicekli, “Automation composition of Web services with the abductive event calculus,” Inf. Sci. 180, 3589–3613 (2010).

    Article  Google Scholar 

  16. P. V. Knudsen and J. Madsen, “Integrating communication protocol selection with hardware/software codesign,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 18, 1077–1095 (1999).

    Article  Google Scholar 

  17. P. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion Estimation (Kluwer, Boston, 1999).

    Book  MATH  Google Scholar 

  18. D. Le Gall, “MPEG: A video compression standard for multimedia applications,” Commun. ACM, 34(4), 47–58 (1991).

    Google Scholar 

  19. M. Sh. Levin, Composite Systems Decisions (Springer-Verlag, New York, 2006).

    Google Scholar 

  20. M. Sh. Levin, “Combinatorial optimization in system configuration design,” Autom. Remote Control 70, 519–561 (2009).

    Article  MATH  Google Scholar 

  21. M. Sh. Levin, “Morphological methods for design of modular systems (a survey),” Electronic Preprint. 20 pp., Jan. 9, 2012; http://arxiv.org/abs/1201.1712 [cs.SE]

  22. M. Sh. Levin, “Combinatorial Synthesis of Communication Protocol ZigBee with Interval Multiset Estimates,” in Proc. 4nd Int. Congr. on Ultra Modern Telecomm. & Control Systems ICUMT-2012, Russia, St. Petersburg, Russia, October 3–5, 2012 (IEEE, New York, 2012), pp. 29–34.

    Google Scholar 

  23. M. Sh. Levin, “Composite strategy for multicriteria ranking/sorting (methodological issues, examples),” Electronic Preprint. 24 pp., Nov. 9, 2012; http://arxiv.org/abs/1211.2245 [math.OC].

  24. M. Sh. Levin, O. Kruchkov, O. Hadar, and E. Kaminsky, “Combinatorial systems evolution: Example of standard for multimedia information,” INFORMATICA 20, 519–538 (2009).

    MATH  Google Scholar 

  25. M. Sh. Levin, A. Andrushevich, R. Kistler, and A. Klapproth, “Combinatorial evolution of ZigBee protocol,” in Proc. 2010 IEEE Region 8th Int. Conf. “SIBIRCON-2010”, Irkutsk, 2010 (IEEE, New York, 2010), Vol. 1, pp. 314–319.

    Google Scholar 

  26. M. Sh. Levin, A. Andrushevich, R. Kistler, and A. Klapproth, “Combinatorial evolution and forecasting of communication protocol ZigBee,” Electronic Preprint. 6 pp., April 15, 2012; http://arxiv.org/abs/1204.3259 [cs.NI]

  27. P. K. McKeenly, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng, “Composing adaptive software,” IEEE Comput. 37(7), 56–64 (2004).

    Article  Google Scholar 

  28. J. L. Mitchell, W. B. Pennebaker, and C. E. Fogg, D. J. Legall (Eds.), MPEG Video Compression Standard (Chapman&Hall, London 1996).

    Google Scholar 

  29. M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algorithm configuration,” in Proc. Int. Conf. on Computer Vision Theory and Applications VISSAPP’09, Lisboa, Portugal, Feb. 2009 (INSTICC Press, Lisboa, 2009), pp. 331–340.

    Google Scholar 

  30. M. Niamanesh and R. Jalili, “DRAPS: A framework for dynamic reconfigurable protocol stacks,” J. Inf. Sci. Eng. 25, 827–841 (2009).

    Google Scholar 

  31. F. Pereira, The MPEG-4 Book (Wiley, New York, 2002).

    Google Scholar 

  32. O. Rutti and A. Schiper, “A predicate-based approach to dynamic protocol update in group communication,” in Proc. Int. Parallel and Distributed Processing Sypm. IPDP, Miami, Florida, USA, Apr. 2008 (IEEE Computer Society, Los Alamitos, 2008), pp. 1–12.

    Google Scholar 

  33. J. G. Quenum, S. Aknine, O. Shehory, and S. Honiden, “Dynamic protocol selection in open and heterogeneous systems,” in Proc. IEEE/WIC/ACM Int. Conf. on Intelligent Agent Technology, Workshops, Hong Kong, China, Dec. 18–22, 2006 (IEEE, New York, 2006), pp. 333–341.

    Chapter  Google Scholar 

  34. K. Shibata, K. Okamura, and K. Araki, “Design and evaluation of dynamic protocol seleciton architecture for reliable multicast,” in Proc. Symp. on Applications and the Internet (SAINT 2002), Nara City, Japan, 28 Jan.–1 Feb. 2002 (IEEE Computer Society, 2002), pp. 262–269.

    Chapter  Google Scholar 

  35. K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Networks: Technology, Protocols, and Applications (Wiley, New York, 2007).

    Book  Google Scholar 

  36. X. Song and W. Dou, “A workflow framework for intelligent service composition,” Future Generaiton Comput. Systems 27, 627–636 (2011).

    Article  Google Scholar 

  37. D. B. Stewart, R. A. Volpe, and P. K. Khosta, “Design of dynamicaly reconfigurable real-time software using port-based objects,” IEEE Trans. Software Eng. 23, 759–776 (1997).

    Article  Google Scholar 

  38. J. Watkinson, MPEG Handbook (Butterworth-Heinemann, UK, 2001).

    Google Scholar 

  39. C.-J. Zhou, H. Chen, Y.-Q. Qin, Y.-F. Shi, and G.-C. Yu, “Self-organization of reconfigurable protocol stack for networked control systems,” Int. J. Autom. Control 8, 221–235 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sh. Levin.

Additional information

Original Russian Text © M.Sh. Levin, 2012, published in Informatsionnye Protsessy, 2012, Vol. 12, No. 4, pp. 389–399.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, M.S. A modular approach to the communication protocol and standard for multimedia information: A review. J. Commun. Technol. Electron. 58, 594–601 (2013). https://doi.org/10.1134/S106422691306017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422691306017X

Keywords

Navigation