Skip to main content
Log in

Nonlinear optical devices based on suspended-core microstructured optical fibers

  • On the 60th Birthday of Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Suspended-core microstructured optical fibers are employed in lasers that generate ultrashort pulses and supercontinuum generators. It is demonstrated that a femtosecond fiber laser based on the ytterbium-doped microstructured fiber generates pulses with a duration of 95 fs at a wavelength of 1045 nm and a mean power of 5 mW in the absence of additional compression. Supercontinuum is generated in tapered microstructured fibers with suspended core in the wavelength interval 400–1400 nm. Suspended-core micro-structured fibers may serve as promising elements for nonlinear optical devices due to specific waveguide characteristics, relative simplicity of manufacturing, and variable optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Alcock, A. C. Tropper, A. I. Ferguson, and D. C. Hanna, Electron. Lett. 22, 84 (1986).

    Article  Google Scholar 

  2. I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, Electron. Lett. 22, 268 (1986).

    Article  Google Scholar 

  3. J. D. Kafka, T. Baer, and D. W. Hall, Opt. Lett. 14, 1269 (1989).

    Article  Google Scholar 

  4. M. E. Fermann, M. Hofer, F. Haberl, and S. P. Craig-Ryan, Electron. Lett. 26, 1737 (1990).

    Article  Google Scholar 

  5. I. Duling, Opt. Lett. 16, 539 (1991).

    Article  Google Scholar 

  6. A. Tünnermann, T. Schreiber, and J. Limpert, Appl. Opt. 49(25), F71 (2010).

    Article  Google Scholar 

  7. M. E. Fermann and I. Hartl, IEEE Journal of Selected Topics in Quant. Electron. 15(1), 19 (2009).

    Google Scholar 

  8. X. Zhou, D. Yoshitomi, Y. Kobayashi, et al., in Proc. Conf. on Lasers and Electro-Optics (CLEO), San Jose, CA, 2008 (Opt. Soc. of Am., Washington, 2008), p. CFP7.

    Google Scholar 

  9. F. Röser, J. Rothhard, B. Ortac, et al., Opt. Lett. 30, 2754 (2005).

    Article  Google Scholar 

  10. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, et al., Opt. Lett. 25, 37 (2000).

    Article  Google Scholar 

  11. R. Paschotta, R. Häring, E. Gini, et al., Opt. Lett. 24, 388 (1999).

    Article  Google Scholar 

  12. O. Schmidt, J. Rothhardt, F. Röser, et al., Opt. Lett. 32, 1551 (2007).

    Article  Google Scholar 

  13. J. Kerttula, V. Filippov, Y. Chamorovskii, et al., Opt. Express 18, 18543 (2010).

    Article  Google Scholar 

  14. P. Kaiser and H. W. Astle, Bell Syst. Tech. J. 53, 1021 (1974).

    Article  Google Scholar 

  15. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).

    Article  Google Scholar 

  16. R. F. Cregan, B. J. Mangan, J. C. Knight, et al., Science 285(5433), 1537 (1999).

    Article  Google Scholar 

  17. K. Schuster, J. Kobelke, J. Kirchhof, et al., in Proc. 54th Int. Conf. Wire and Cable Symp. (IWCS), Providence, Rhode Island, USA, Nov. 13–16, 2005 (IWCS, Inc., 2005), p. 382.

    Google Scholar 

  18. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photonics Technol. Lett. 11, 674 (1999).

    Article  Google Scholar 

  19. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, Opt. Express 17, 2646 (2009).

    Article  Google Scholar 

  20. T. A. Birks, J. C. Knight, and P. S. J. Russell, Opt. Lett. 22, 961 (1997).

    Article  Google Scholar 

  21. W. J. Wadsworth, R. M. Percival, G. Bouwmans, et al., IEEE Photonics Technol. Lett. 16, 843 (2004).

    Article  Google Scholar 

  22. Yu. K. Chamorovskii, N. I. Starostin, S. K. Morshnev, et al., Kvantovaya Elektron. (Moscow) 39, 1074 (2009).

    Article  Google Scholar 

  23. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al., Opt. Lett. 2, 1325 (2000).

    Article  Google Scholar 

  24. L. Mollenauer, J. Gordon, and M. Islam, IEEE J. Quantum Electron. 22(1), 157 (1986).

    Article  Google Scholar 

  25. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and Applications (Marcel Dekker, New York, 2003).

    Google Scholar 

  26. K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, Electron. Lett. 37, 560 (2001).

    Article  Google Scholar 

  27. H. Lim, F. Ilday, and F. Wise, Opt. Express 10, 1497 (2002).

    Article  Google Scholar 

  28. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, Opt. Express 11, 265 (2003).

    Article  Google Scholar 

  29. A. Isomäki and O. G. Okhotnikov, Opt. Express 14, 9238 (2006).

    Article  Google Scholar 

  30. A. Hideur, C. Lecaplain, L. Rasoloniaina, et al., Adv. Solid-State Photonics, ATuB11 (2011).

    Google Scholar 

  31. M. Tse, H. Y. Tam, L. B. Fu, et al., IEEE Photonics Technol. Lett. 21, 164 (2009).

    Article  Google Scholar 

  32. K. M. Kiang, K. Frampton, T. M. Monro, et al., Electron. Lett. 38, 546 (2002).

    Article  Google Scholar 

  33. N. Groothoff, J. Canning, E. Buckley, et al., Opt. Lett. 28, 233 (2003).

    Article  Google Scholar 

  34. G. Bouwmans, R. M. Percival, W. J. Wadsworth, et al., Appl. Phys. Lett. 83, 817 (2003).

    Article  Google Scholar 

  35. L. Dong, B. K. Thomas, and L. Fu, Opt. Express 16, 16423 (2008).

    Article  Google Scholar 

  36. J. Cascante-Vindas, S. Torres-Peiró, A. Diez, and M. V. Andrés, Appl. Phys. B 98, 371 (2009).

    Article  Google Scholar 

  37. J. Cascante-Vindas, A. Diez, S. Torres-Peiro, et al., in Proc. 11th Int. Conf. on Transparent Opt. Networks (ICTON), Azores, Portugal, June, 2009, (IEEE Computer Society, Piscataway, NJ, USA, 2009), p. 1.

    Book  Google Scholar 

  38. J. Cascante-Vindas, A. Diez, J. L. Cruz, and M. V. Andres, Opt. Lett. 34, 3628 (2009).

    Article  Google Scholar 

  39. A. Y. Chamorovskii, O. G. Okhotnikov, and S. A. Nikitov, J. Comm. Technol. Electron. 55, 928 (2010).

    Article  Google Scholar 

  40. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2006).

    Google Scholar 

  41. R. Herda and O. G. Okhotnikov, IEEE J. Quantum Electron. 40, 893 (2004).

    Article  Google Scholar 

  42. R. Herda, S. Kivisto, O. G. Okhotnikov, et al., IEEE Photonics Technol. Lett. 20, 217 (2008).

    Article  Google Scholar 

  43. A. Isomaki, M. D. Guina, P. Tuomisto, and O. G. Okhotnikov, IEEE Photonics Technol. Lett. 18, 2150 (2006).

    Article  Google Scholar 

  44. R. Herda, A. Isomaki, and O. G. Okhotnikov, Electron. Lett. 42, 1025 (2006).

    Article  Google Scholar 

  45. A. Chamorovskiy, Y. Chamorovskiy, I. Vorob’ev, and O. G. Okhotnikov, IEEE Photonics Technol. Lett. 22, 1321 (2010).

    Article  Google Scholar 

  46. H. Ebendorff-Heidepriem and T. M. Monro, in Proc. Australian Conf. on Optical Fibre Technol. (ACOFT), Melbourne, Australia, July 10–13, 2006 (Australian Optical Society, Melbourne, 2006), p. 69.

    Book  Google Scholar 

  47. K. M. Golant, A. P. Bazakutsa, O. V. Butov, et al., in Proc. 36th European Conf. and Exhibition on Optical Commun. (ECOC), Torino, Italy, Sept. 19–23, 2010 (IEEE, Piscataway, NJ, 2010), p. 1.

    Book  Google Scholar 

  48. R. Herda and O. G. Okhotnikov, J. Appl. Phys. Lett. 86, 011113 (2004).

    Article  Google Scholar 

  49. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, Cambridge, 2010).

    Book  Google Scholar 

  50. J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002).

    Article  Google Scholar 

  51. H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, et al., App. Phys. B 81, 377 (2005).

    Article  Google Scholar 

  52. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, Opt. Lett. 25, 1415 (2000).

    Article  Google Scholar 

  53. J. Hiroishi, R. Sugizaki, O. Aso, et al., Furukawa Rev. 23, 21 (2003).

    Google Scholar 

  54. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, IEEE J. Sel. Top. Quantum Electron. 15(1), 103 (2009).

    Article  Google Scholar 

  55. L. Fu, B. K. Thomas, and L. Dong, Opt. Express 16, 19629 (2008).

    Article  Google Scholar 

  56. A. Kudlinski, A. K. George, J. C. Knight, et al., Opt. Express 14, 5715 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Chamorovskiy.

Additional information

Original Russian Text © A.Yu. Chamorovskiy, S.A. Nikitov, 2013, published in Radiotekhnika i Elektronika, 2013, Vol. 58, No. 9, pp. 891–904.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamorovskiy, A.Y., Nikitov, S.A. Nonlinear optical devices based on suspended-core microstructured optical fibers. J. Commun. Technol. Electron. 58, 879–890 (2013). https://doi.org/10.1134/S1064226913060053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226913060053

Keywords

Navigation