A layer radiowave absorber based on double-period lattices of resistive squares


A radiowave-absorbing composite material based on double-period lattices of resistive squares is considered. Methods of the electric circuit and long line theories are applied to obtain expressions for the estimate of the effective permittivity of such a composite. It is shown that the frequency dependence of the effective permittivity of the realized composite is close to the relaxation value. The reflection characteristics of a radiowave absorber based on a composite with double-period lattices of resistive squares are investigated. It is found that, for such a radiowave absorber, the ratio of the difference of the extreme wavelengths of its operating band (corresponding to the minus-10-dB reflection level) to the thickness of the radiowave absorber is within an interval of 4.2–4.5.

This is a preview of subscription content, access via your institution.


  1. 1.

    E. Schloemann, J. Magn. Magn. Mater 209(1–3), 15 (2000).

    Article  Google Scholar 

  2. 2.

    M. Pardavi-Horvath, J. Magn. Magn. Mater. 215–216, 171 (2000).

    Article  Google Scholar 

  3. 3.

    G. Ott, J. Wrba, and R. Lucke, J. Magn. Magn. Mater. 254–255, 535 (2003).

    Article  Google Scholar 

  4. 4.

    B. S. Zhang, Y. Feng, H. Xiong, et al., IEEE Trans. Magn. 42, 1778 (2006).

    Article  Google Scholar 

  5. 5.

    M. A. Abshinova, A. V. Lopatin, N. E. Kazantseva, et al., Composites Pt. A: Appl. Sci. Manufacturing 38, 2471 (2007).

    Article  Google Scholar 

  6. 6.

    A. V. Lopatin, N. E. Kazantseva, Yu. N. Kazantsev, O. A. D’yakonova, J. Vil áková, and P. Sáha, J. Commun. Technol. Electron. 53, 487 (2008).

    Article  Google Scholar 

  7. 7.

    A. N. Lagarkov, S. M. Matytsin, K. N. Rozanov, and A. K. Sarychev, J. Appl. Phys. 84, 3806 (1998).

    Article  Google Scholar 

  8. 8.

    K. N. Rozanov, IEEE Trans. Antennas Propag. 48, 1230 (2000).

    Article  Google Scholar 

  9. 9.

    S. N. Starostenko, A. P. Vinogradov, and S. T. Kibets, J. Commun. Technol. Electron. 44, 761 (1999).

    Google Scholar 

  10. 10.

    H. T. Liu, H. F. Cheng, Z. Y. Chu, and D. Y. Zhang, Mater. Design 28, 2166 (2007).

    Article  Google Scholar 

  11. 11.

    B. A. Munk, Frequency Selective Surface: Theory and Design (Wiley, New York, 2000).

    Book  Google Scholar 

  12. 12.

    B. A. Munk, P. Munk, and J. Prior, IEEE Trans. Antennas Propag. 55, 186 (2007).

    Article  Google Scholar 

  13. 13.

    Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Ed. by M. Abramowits, and I. A. Stegun (Dover, New York, 1968).

    Google Scholar 

  14. 14.

    G. Z. Aizenberg, V. G. Yampol’skii, and O. N. Tereshin, Ultrashort-Wave Antennas (Svyaz’, Moscow, 1977), Part 2 [in Russian].

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to O. A. D’yakonova.

Additional information

Original Russian Text © Yu.N. Kazantsev, V.A. Babayan, N.E. Kazantseva, O.A. D’yakonova, R. Mouchka, Ya. Vil áková, P. Sáha, 2013, published in Radiotekhnika i Elektronika, 2013, Vol. 58, No. 3, pp. 264–269.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kazantsev, Y.N., Babayan, V.A., Kazantseva, N.E. et al. A layer radiowave absorber based on double-period lattices of resistive squares. J. Commun. Technol. Electron. 58, 233–237 (2013). https://doi.org/10.1134/S106422691303008X

Download citation


  • Reflection Coefficient
  • Frequency Dependence
  • Frequency Dispersion
  • Reflection Characteristic
  • Effective Permittivity