Comparison of various constructions of binary LDPC codes based on permutation matrices

  • V. V. Zyablov
  • F. I. Ivanov
  • V. G. Potapov
Articles from the Russian Journal Informatsionnye Protsessy


Ensembles of low-density parity check codes based on permutation matrices are considered. Algorithms for generation of check matrices of such codes are proposed. The results of simulation of the obtained code constructions for an iterative belief propagation (sum-product) decoding algorithm applied in the case of transmission of a code word via a binary channel with an additive Gaussian white noise are presented.


Error Probability LDPC Code Code Word Cyclic Shift Permutation Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. Gallager, Low-Density Parity-Check Codes (MIT Press, Massachusetts, 1963).Google Scholar
  2. 2.
    T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of Capacity-Approaching Irregular Low-Density Parity Check Codes,” IEEE Trans. on Inform. Theory 47, 619–637 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    E. Gabidulin, A. Moinian, and B. Honary, “Generalized Construction of Quasi-Cyclic Regular LDPC Codes Based on Permutation Matrices,” in Proc. IEEE Int. Symp. Inf. Theory, Seattle, WA, 2006 (IEEE, New York, 2006), pp. 679–683.CrossRefGoogle Scholar
  4. 4.
    I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A Class of Low-Density Parity-Check Codes Constructed Based on Reed-Solomon Codes with two Information Symbols,” IEEE Commun. Lett. 7, 317–319 (2003).CrossRefGoogle Scholar
  5. 5.
    T. Okamura, “Designing LDPC Codes Using Cyclic Shifts,” in Proc. IEEE Int. Symp. Inf. Theory, Yokohama, 2003 (IEEE, New York, 2003), p. 151.CrossRefGoogle Scholar
  6. 6.
    P. C. Fossorier, “Quasi-Cyclic Low-Density Parity-Check Codes from Circulant Permutation Matrices,” IEEE Trans. Inform. Theory 50, 1788–1793 (2004).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, “On the Spectrum of Possible Parameters of Symmetric Configurations,” in Proc. 12th Int. Symp. on Problems of Redundancy in Information and Control Systems, St. Petersburg, Russia, May, 2009, (St. Petersburg. Gos. Univ. Aerospace Instrumentation (SUAI), St. Petersburg, 2009), pp. 69–54.Google Scholar
  8. 8.
    A. C. H. Ling, “Difference Triangle Sets From Affine Planes,” IEEE Trans. Inform. Theory 48, 2399–2401 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    M. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Trans. Inform. Theory 27, 533–547 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    I. V. Zhilin, P. S. Rybin, and V. V. Zyablov, “Comparison of Decoding Algorithms for Binary LDPC Codes with a Rigid Input,” in Proc. 34th Int. Conf. Young Researchers and Specialists IPPI RAN “Informational Technologies and Systems”, Gelendzhik, 2011 (IPPI RAN, Moscow, 2011), pp. 221–227.Google Scholar
  11. 11.
    F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor Graphs and the Sum-Product Algorithm,” IEEE Trans. Inform. Theory 47, 498–519 (2001).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. V. Zyablov
    • 1
  • F. I. Ivanov
    • 1
  • V. G. Potapov
    • 1
  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations