The influence of the degree of coherence of a semiconductor laser on the statistic of the backscattered intensity in a single-mode optical fiber

  • A. E. Alekseev
  • Ya. A. Tezadov
  • V. T. Potapov
Physical Processes in Electron Devices


The results of the study of the statistical dependence of the backscattered light intensity of a semiconductor laser in a single-mode fiber on the duration of the probing pulse and the source coherence time are presented. It is shown that, for a given light coherence time, the intensity distribution function changes with increasing pulse duration from the function close to the exponential one for the pulse duration approximately equal to the coherence time to the function close to the Gaussian one for the pulse duration exceeding the coherence time. The exponential statistics of scattered light makes it possible to obtain a higher sensitivity for the coherent reflectometer using the direct detection method.


Pulse Duration Coherence Time Spectral Bandwidth Scattered Light Intensity Complex Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Mamedov, V. T. Potapov, S. V. Shatalin, and R. Juškaitis, Opt. Lett. 19, 225 (1994).CrossRefGoogle Scholar
  2. 2.
    B. G. Gorshkov, V. M. Paramonov, A. S. Kurkov, and A. T. Kulakov, Lightwave Rus. Ed., No. 4, 47 (2005).Google Scholar
  3. 3.
    J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 23, 2081 (2005).CrossRefGoogle Scholar
  4. 4.
    Yuelan Lu, Tao Zhu, Liang Chen, Xiaoyi Bao, J. Lightwave Technol. 28, 3243 (2010).Google Scholar
  5. 5.
    A. H. Hartog and M. P. Gold, J. Lightwave Technol. LT-2, 76 (1984).CrossRefGoogle Scholar
  6. 6.
    P. Gysel and R. K. Staubli, J. Lightwave Technol. 8, 561 (1990).CrossRefGoogle Scholar
  7. 7.
    R. K. Staubli and P. Gysel, IEEE Trans. Commun. 40, 1091 (1992).CrossRefGoogle Scholar
  8. 8.
    J. W. Goodman, Statistical Optics (Wiley, New York, 1985; Mir, Moscow, 1988).Google Scholar
  9. 9.
    J. W. Goodman, Statistical Properties of Laser Speckle Patterns, Laser Speckle and Related Phenomena, Ed. by J. C. Dainty (Springer-Verlag, Berlin, 1975).Google Scholar
  10. 10.
    C. H. Henry, J. Lightwave Technol. LT-4, 298 (1986).CrossRefGoogle Scholar
  11. 11.
    B. Moslehi, J. Lightwave Technol. 4, 1334 (1986).CrossRefGoogle Scholar
  12. 12.
    H. L. Van Trees, Detection, Estimation and Modulation Theory (Wiley, New York, 1968).zbMATHGoogle Scholar
  13. 13.
    A. V. Manzhirov and A. D. Polyanin, Methods of Solution of Integral Equations: Handbook (Faktorial, Moscow, 1999) [in Russian].Google Scholar
  14. 14.
    W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill Book Co, New York, 1958).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. E. Alekseev
  • Ya. A. Tezadov
  • V. T. Potapov

There are no affiliations available

Personalised recommendations