An effect of excitation of a transverse magnetic creeping wave when a transverse electric wave crosses the line of the coincidence of propagation constants

Abstract

Transverse electromagnetic electric (TE) and transverse magnetic (TM) creeping waves on a surface with an anisotropic impedance boundary condition are considered. An asymptotic theory is developed for creeping waves. The theory is valid near the line where the attenuation parameters of two different types of waves coincide and, therefore, standard asymptotics are inapplicable. Asymptotic formulas describing physical effects that occur when a creeping wave propagates across the degeneracy line are derived. It is found that, behind the degeneracy line, a propagating TE wave excites a TM wave with a small amplitude (of order O(k −1/6)) and a propagating TM wave excites a TE wave.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. M. Babich and N. Ya. Kirpichnikova, The Boundary Layer Method in Diffraction Problems (Leningr. Gos. Univ., Leningrad, 1974); Springer-Verlag, 1979).

    Google Scholar 

  2. 2.

    V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of Diffraction of Short Waves (Nauka, Moscow, 1973); V.M. Babich and V.S. Buldyrev, Shot-Wavelength Diffraction Theory: Asymptotic Methods (Springer-Verlag, 1991).

    Google Scholar 

  3. 3.

    F. Molinet, I. V. Andronov, and D. Bouche, Asymptotic and Hybrid Methods in Electromagnetics (IEE, London, 2005).

    MATH  Google Scholar 

  4. 4.

    V. M. Babich, Radiotekh. Elektron. (Moscow) 50, 297 (2005) [J. Commun. Technol. Electron. 50, 274 (2005)].

    Google Scholar 

  5. 5.

    I. V. Andronov and D. Bouche, Prog. Electromagn. Res. (PIER) 59, 215 (2006).

    Article  Google Scholar 

  6. 6.

    I. V. Andronov and D. Bouche, Wave Motion 45, 400 (2008) [Radiophys. Quantum Electron. 33 (11), 882 (1990)].

    Article  MathSciNet  Google Scholar 

  7. 7.

    M. V. Perel, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 33, 1208 (1990) [Radiphys. Quantun Electron. 33 (11), 882 (1990)].

    Google Scholar 

  8. 8.

    M. V. Perel, I. V. Fialkovsky, and A. P. Kiselev, Zap. Nauchn. Semin. POMI 264, 258 (2000) [J. Math. Sci. 111(5), 3775 (2002)].

    Google Scholar 

  9. 9.

    M. V. Perel, J. D. Kaplunov, and G. A. Rogerson, Wave Motion 41, 95 (2005).

    MATH  Article  MathSciNet  Google Scholar 

  10. 10.

    D. Yu. Zaika, M. V. Perel, and I. V. Andronov, in Proc. Int. Conf. Days on Diffraction-2009, St. Petersburg, May 26–29, 2009 (St. Petersburg Gos. Univ., St. Petersburg, 2009), p. 206.

    Google Scholar 

  11. 11.

    D. Yu. Zaika, M. V. Perel, and I. V. Andronov, in Proc. Int. Symp. Progress in Electromagnetics Research (PIERS 2009), Moscow, Aug. 18–21, 2009 (Electromagn. Academy, Cambridge Mass., 2009), p. 1422.

    Google Scholar 

  12. 12.

    I. V. Andronov and D. Bouche, in Proc. Int. Symp. Progress in Electromagnetics Research (PIERS 2009), Moscow, Aug. 18–21, 2009 (Electromagn. Academy, Cambridge Mass., 2009), p. 1518.

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © I.V. Andronov, D.Yu. Zaika, M.V. Perel, 2011, published in Radiotekhnika i Elektronika, 2011, Vol. 56, No. 7, pp. 782–788.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andronov, I.V., Zaika, D.Y. & Perel, M.V. An effect of excitation of a transverse magnetic creeping wave when a transverse electric wave crosses the line of the coincidence of propagation constants. J. Commun. Technol. Electron. 56, 798–804 (2011). https://doi.org/10.1134/S1064226911070035

Download citation

Keywords

  • Transverse Magnetic
  • Solvability Condition
  • Attenuation Parameter
  • Internal Expansion
  • Geodesic Line