Skip to main content
Log in

Optical properties of nanocrystal layers embedded in a carrier medium

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A matrix ordered nanocomposite formed from a monolayer of spherical particles that is embedded in a carrier medium is considered. An analytic theory describing the optical properties of such a nanocomposite is proposed. It is shown that the monolayer is an imaginary interface with non-Fresnel reflection and transmission coefficients and that the Airy relationships for a thin film deposited on a substrate can be applied to the aforementioned structure. Conditions for constructive and destructive interferences of the fields reflected by the real and imaginary interfaces are determined. With the use of these conditions, it is possible to vary the total reflectance and transmittance of the structure. Expressions for the effective refractive index of the matrix medium are derived, and it is shown that the presence of a nanoparticle monolayer substantially changes this index. The results are verified through comparison with those obtained from the exact numerical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Shalaev, W. Cai, U. K. Chettiar, et al., Opt. Lett. 30, 3356 (2005).

    Article  Google Scholar 

  2. D. R. Smith and J. B. Pendry, J. Opt. Soc. Am. B: Opt. Phys. 23, 391 (2006).

    Article  Google Scholar 

  3. V. M. Agranovich, Y. R. Shen, R. H. Baughman, et al., Phys. Rev. 69, 165112 (2004).

    Article  Google Scholar 

  4. O. N. Gadomskii and A. S. Shalin, Zh. Eksp. Teor. Fiz. 132, 870 (2007) [JETP 105, 761 (2007)].

    Google Scholar 

  5. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, et al., Nature 438(7066), 335 (2005).

    Article  Google Scholar 

  6. S. Zhang, W. Fan, N. C. Panoiu, et al., Phys. Rev. Lett. 95, 137404 (2005).

    Article  Google Scholar 

  7. J.-Q. Xi, Jong Kyu. Kim, E. F. Schubert, et al., Opt. Lett. 31, 601 (2006).

    Article  Google Scholar 

  8. V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, et al., Opt. Spektrosk. 96, 139 (2004) [Opt. Spectrosc. 96, 128 (2004)].

    Article  Google Scholar 

  9. Yu. Ya. Gafner, S. L. Gafner, and P. Entel’, Fiz. Met. Metalloved. 100, 71 (2005) [Phys. Met. Metallogr. 100, 61 (2005)].

    Google Scholar 

  10. R. Meyer, S. L. Gafner, J. J. Gafner, et al., Adv. Sci. Technol. (Faenza, Italy) 44, 179 (2004).

    Google Scholar 

  11. A. N. Oraevskii and I. E. Protsenko, Kvantovaya Electron. 31, 252 (2001).

    Article  Google Scholar 

  12. O. A. Zaimidoroga, V. N. Samoilov, and I. E. Protsenko, Fiz. Element. Chast. Atom. Yadra 33(1), 101 (2002).

    Google Scholar 

  13. S. G. Moiseev, E. A. Pashinina, and S. V. Sukhov, Kvantovaya Electron. 37, 446 (2007).

    Article  Google Scholar 

  14. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  15. A. S. Shalin, Pis’ma Zh. Eksp. Teor. Fiz. 90, 279 (2009) [JETP Letters 90, 257 (2009)].

    Google Scholar 

  16. A. S. Shalin and S. G. Moiseev, Opt. Spektrosk. 106, 1004 (2009) [Opt. Spectrosc. 106, 916 (2009)].

    Article  Google Scholar 

  17. A. S. Shalin, Radiotekh. Elektron. (Moscow) 54, 733 (2009) [J. Commun. Technol. Electron. 54, 699 (2009)].

    Google Scholar 

  18. M. T. Haarmans and D. Bedeaux, Thin Solid Films 224(1), 117 (1993).

    Article  Google Scholar 

  19. G. Mie, Ann. Phys. (New York) 330, 377 (1908).

    Article  Google Scholar 

  20. A. S. Shalin, Zh. Prikl. Spectrosk. 73, 641 (2006).

    Google Scholar 

  21. A. S. Shalin, Izv. Vyssh. Uchebn. Zaved., Fiz. 49(8), 3 (2006).

    Google Scholar 

  22. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic, New York, 1995).

    Google Scholar 

  23. Z. L. Liu, A. Boltasseva, R. H. Pedersen, et al., Metamaterials, 2(1), 45 (2008).

    Article  Google Scholar 

  24. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).

    MATH  Google Scholar 

  25. D. W. Prather and S. Shi, J. Opt. Soc. Amer. A 16, 1131 (1999).

    Article  Google Scholar 

  26. P. C. Chaumet, A. Rahmani, and G. W. Bryant, Phys. Rev. B 67, 165404 (2003).

    Article  Google Scholar 

  27. A. Curry, G. Nusz, A. Chilkoti, et al., Opt. Express 13, 2668 (2005).

    Article  Google Scholar 

  28. A. S. Shalin and S. G. Moiseev, Kvantovaya Electron. 39, 1175 (2009).

    Article  Google Scholar 

  29. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow 1973).

    Google Scholar 

  30. http://www.comsol.com/products/multiphysics/

  31. A. S. Shalin, Fiz. Met. Metalloved. 105, 137 (2008) [Phys. Met. Metallogr. 105, 126 (2008)].

    Google Scholar 

  32. N. G. Khlebtsov, Kvantovaya Electron. 38, 504 (2008).

    Article  Google Scholar 

  33. O. N. Gadomskii and A. S. Shalin, Fiz. Met. Metalloved. 101, 462 (2006) [Phys. Met. Metallogr. 101, 425 (2006)].

    Google Scholar 

  34. O. N. Gadomskii, Usp. Fiz. Nauk 170, 1145 (2000).

    Article  Google Scholar 

  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

    Google Scholar 

  36. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  Google Scholar 

  37. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  38. G. P. M. Poppe, C. M. J. Wijers, and A. Silfhout, Phys. Rev. B 44, 7917 (1991).

    Article  Google Scholar 

  39. C. M. J. Wijers and G. P. M. Poppe, Phys. Rev. B 46, 7605 (1992).

    Article  Google Scholar 

  40. G. W. Milton, The Theory of Composites (Cambridge Univ. Press, Cambridge, 2004).

    Google Scholar 

  41. S. V. Sukhov and K. V. Krutitsky, Phys. Rev. B 65, 115407 (2002).

    Article  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © A.S. Shalin, 2011, published in Radiotekhnika i Elektronika, 2011, Vol. 56, No. 1, pp. 20–33.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalin, A.S. Optical properties of nanocrystal layers embedded in a carrier medium. J. Commun. Technol. Electron. 56, 14–26 (2011). https://doi.org/10.1134/S1064226911010098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226911010098

Keywords

Navigation