Skip to main content
Log in

Forced nonlinear precession of the magnetization vector under the conditions of an orientation transition

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Forced nonlinear precession of the magnetization vector in a normally magnetized magnetic plate under the conditions of an orientation transition is considered. It is shown that, in the field lower than the form demagnetization field, the variable circularly polarized field causes precession of the equilibrium position of the magnetization vector. It is demonstrated based on a vector model in which the precession period of the equilibrium position is inversely proportional to the squared amplitude of the variable field and the sine of the angle of deviation of the equilibrium position of magnetization from the constant field. It is shown that the critical parameters necessary for excitation of precession of the equilibrium position are the amplitude and frequency of the variable field. Diagrams determining domains of existence of precession of the equilibrium position for different saturation magnetization of a magnetic plate are constructed in terms of the coordinates variable field amplitude-frequency. The role of dissipation of magnetization oscillations in the determination of the critical parameters is elucidated. The features of precession in the presence of asymmetric excitation and in the presence of anisotropy in the plane of the plate are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Fizmatlit, Moscow, 1994) [in Russian].

    Google Scholar 

  2. Ferrites in Nonlinear Microwave Hardware (Inostrannaya Literatura, Moscow, 1961) [in Russian].

  3. H. Suhl, J. Phys. Chem. Sol. 1(4), 209 (1957).

    Article  Google Scholar 

  4. Ya. A. Monosov, Nonlinear Ferromagnetic Resonance (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  5. V. S. L’vov, Nonlinear Spin Waves (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  6. V. E. Zakharov, V. S. L’vov, and S. S. Starobinets, Uspekhi Fiz. Nauk 114, 609 (1974).

    Google Scholar 

  7. A. G. Gurevich, Ferrites at Microwave Frequencies (Fizmatgiz, Moscow, 1960; Consultants Bureau, New York, 1963).

    Google Scholar 

  8. A. V. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnetics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  9. J. W. Nielsen and E. F. Dearborn, J. Phys. Chem. Solids 5(3), 202 (1958).

    Article  Google Scholar 

  10. R. C. LeCraw, E. G. Spencer, and C. S. Porter, Phys. Rev. 110, 1311 (1958).

    Article  Google Scholar 

  11. A. G. Temiryazev, M. P. Tikhomirova, and P. E. Zilberman, J. Appl. Phys. 76, 5586 (1994).

    Article  Google Scholar 

  12. P. E. Zil’berman, A. G. Temiryazev, and M. P. Tikhomirova, Zh. Eksp. Teor. Fiz. 108, 281 (1995).

    Google Scholar 

  13. Yu. V. Gulyaev, P. E. Zil’berman, A. G. Temiryazev, and M. P. Tikhomirova, Fiz. Tverd. Tela 42, 1062 (2000).

    Google Scholar 

  14. L. F. Alvarez, O. Pla, and O. Chubykalo, Phys. Rev. B 61, 11613 (2000).

    Article  Google Scholar 

  15. A. M. Shutyi and D. I. Sementsov, Fiz. Tverd. Tela 42, 1268 (2000).

    Google Scholar 

  16. A. M. Shutyi and D. I. Sementsov, Fiz. Tverd. Tela 43, 1439 (2001).

    Google Scholar 

  17. A. M. Shutyi and D. I. Sementsov, Fiz. Tverd. Tela 44, 734 (2002).

    Google Scholar 

  18. D. I. Sementsov and A. M. Shutyi, Usp. Fiz. Nauk 177, 831 (2007).

    Article  Google Scholar 

  19. S. N. Karpachev, V. S. Vlasov, and L. N. Kotov, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., No. 6, 60 (2006).

  20. V. S. Vlasov, Candidate’s Dissertation in Mathematics and Physics (MGU, Moscow, 2007).

  21. K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, Orientational Transitions in Rare-Earth Magnetics (Nauka, Moscow, 1979) [in Russian].

  22. V. S. Vlasov, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, Radiotekh. Elektron. (Moscow) 54, 863 (2009) [J. Commun. Technol. Electron. 54, 821 (2009)].

    Google Scholar 

  23. V. I. Shcheglov, Radiotekh. Elektron. (Moscow) 16, 2321 (1971).

    Google Scholar 

  24. V. V. Migulin, V. I. Medvedev, E. R. Mustel’, and V. N. Parygin, Fundamentals of the Oscillation Theory (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  25. A. V. Vashkovskii, E. G. Lokk, and V. I. Shcheglov, Fiz. Tverd. Tela 41, 2034 (1999).

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.S. Vlasov, L.N. Kotov, V.G. Shavrov, V.I. Shcheglov, 2011, published in Radiotekhnika i Elektronika, 2011, Vol. 56, No. 1, pp. 84–96.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlasov, V.S., Kotov, L.N., Shavrov, V.G. et al. Forced nonlinear precession of the magnetization vector under the conditions of an orientation transition. J. Commun. Technol. Electron. 56, 73–84 (2011). https://doi.org/10.1134/S1064226910111014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226910111014

Keywords

Navigation