Skip to main content
Log in

Formation of photon ferroelectric crystals with the use of quasi-standing acoustic waves

  • Physical Processes in Electron Devices
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

An acoustic-interference method of formation of photon ferroelectric crystals is investigated. The method does not necessitate photolithography. Schemes of formation of periodic domain structures with the use of elastic waves that interfere in the ferroelectric volume are considered. It is shown that this technology is the most efficient for the creation of photon crystals based on high-coercitivity ferroelectrics, for example, pure congruent-composition LiNbO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Zheltikov, Ross. Nanotekhnol. 2(1–2) (2007).

  2. M. Yamada, Rev. Sci. Instrum. 71, 4010 (2000).

    Article  Google Scholar 

  3. Y. Chin and V. Gopalan, J. Lightwave Technol. 17, 462 (1999).

    Article  Google Scholar 

  4. H. Gnewuch, C. N. Pannel, and G. W. Ross, IEEE Phot. Technol. Lett. 10, 1730 (1998).

    Article  Google Scholar 

  5. H. Gnewuch, N. K. Zayer, C. N. Pannel, et al., Opt. Lett. 25, 305 (2000).

    Article  Google Scholar 

  6. V. V. Krutov and V. G. Mikhalevich, Uspekhi Sovr. Radioelektron., No. 12, 45 (2001).

  7. M. Yamada, N. Nada, and M. Saitoh, Appl. Phys. Lett. 62, 435 (1993).

    Article  Google Scholar 

  8. M. C. Wengler and K. Buse, J. Appl. Phys. 96, 2816 (2004).

    Article  Google Scholar 

  9. V. V. Krutov, E. A. Zasovin, V. G. Mikhalevich, et al., Radiotekhnika, No. 9, 5–10 (2007).

  10. L. E. Myers, R. C. Eckardt, M. M. Fejer, et al., J. Opt. Soc. Am. B 12, 2102 (1995).

    Article  Google Scholar 

  11. V. Ya. Shur, J. Mater. Sci. 41, 199 (2006).

    Article  Google Scholar 

  12. I. Gallmann, G. Steinmeyer, G. Imeshev, et al., Appl. Phys. B 74, s237 (2002).

    Article  Google Scholar 

  13. V. V. Krutov, A. A. Shchuka, and V. G. Mikhalevich, Phys. Vibrations 9(4), 274 (2001).

    Google Scholar 

  14. V. V. Krutov, E. A. Zasovin, V. G. Mikhalevich, and A. A. Shchuka, Radiotekhnika, No. 1, 96 (2007).

  15. V. V. Krutov, V. G. Mikhalevich, and A. A. Shchuka, Nano-Mikrosistemnaya Tekhn. 3, 71 (2007).

    Google Scholar 

  16. C. L. Sones, A. C. Muir, Y. J. Ying, and S. Mailis, Appl. Phys. Lett. 92, 072905 (2008).

    Article  Google Scholar 

  17. V. V. Krutov, E. A. Zasovin, V. G. Mikhalevich, et al., High Tech in Russian Industry (XIII Int. Conf., Moscow, Sept. 6–8, 2007) (Bauman MGTU, Moscow, 2007), pp. 202–204.

    Google Scholar 

  18. V. V. Krutov, Nauchnyi Vest. MIREA, No. 2, 80 (2009).

  19. J. W. Tueker, V. W. Rampton, Microwave Ultrasonic in Solid State Physics (North-Holland, Amsterdam, 1972; Mir, Moscow, 1975).

    Google Scholar 

  20. G. Rosenman, J. Phys. D: Appl. Phys. 32, L49 (1999).

    Article  Google Scholar 

  21. V. V. Krutov, V. G. Mikhalevich, and A. A. Shchuka, Electron. Prom., No. 3, 35 (2006).

  22. G. Schreiber, H. Suche, Y. L. Lee, et al., Appl. Phys. B 73, 501 (2001).

    Google Scholar 

  23. J. P. Meyn, C. Laue, R. Knappe, et al., Appl. Phys. B 73, 111 (2001).

    Google Scholar 

  24. N. J. Berg, B. J. Udelson, and J. N. Lee, Appl. Phys. Lett. 31, 555 (1977).

    Article  Google Scholar 

  25. V. V. Krutov, E. A. Zasovin, V. G. Mikhalevich, et al., in Microwave Engineering and Telecommunication Technologies (Proc. 18th Int. Conf. (CriMiKo’2008), Sevastopol, Crime, Ukraine, Sept. 8–12, 2008) (Veber, Sevastopol, 2008), p. 793.

    Book  Google Scholar 

  26. V. V. Chkalova, V. S. Bondarenko, and G. O. Fokina, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 1886 (1971).

    Google Scholar 

  27. R. B. Thompson and C. F. Quate, J. Appl. Phys. 42, 907 (1971).

    Article  Google Scholar 

  28. N. K. Yushin, V. V. Lemanov, and B. A. Agishev, Fiz. Tverd. Tela 16, 2789 (1974).

    Google Scholar 

  29. Ch. Frenois, J. Joffren, and A. Levelut, J. Phys. 34, 747 (1973).

    Google Scholar 

  30. V. S. Veretin, A. G. Kozorezov, B. N. Krutov, and G. D. Mansfel’d, Radiotekh. Elektron. (Moscow) 37, 404 (1992).

    Google Scholar 

  31. B. N. Krutov, G. D. Mansfel’d, and A. D. Freik, Akust. Zh. 40, 4 (1994).

    Google Scholar 

  32. Yu. V. Gulyaev and G. D. Mansfel’d, Radiotekhnika, No. 8, 42 (2003).

  33. G. S. Gorelik, Oscillations and Waves (Gostekhteorizdat, Moscow, 1950) [in Russian].

    Google Scholar 

  34. A. Eikhenval’d, Usp. Fiz. Nauk 14, 554 (1934).

    Google Scholar 

  35. B. V. Klimenko, N. B. Perelomova, and A. A. Blistanov, Kristallografiya, No. 23, 242 (1975).

  36. A. S. Pine, Phys. Rev. B 2, 2049 (1970).

    Article  Google Scholar 

  37. A. I. Morozov, V. V. Proklov, and B. A. Stankovskii, Piezoelectric Transducers for Radio-Electronic Devices (Radio i Svyaz’, Moscow, 1981) [in Russian].

    Google Scholar 

  38. J. Zelenka, Piezoelectric Resonators and Their Applications (Elsevier, Amsterdam, 1986; Mir, Moscow, 1990).

    Google Scholar 

  39. R. A. Moor and B. R. McAvoy, in Proc. IEEE Ultrasonics Symposium, Chicago, IL, Oct. 14–16, 1981 (IEEE, New York, 1982), pp. 414–424.

    Google Scholar 

  40. B. R. McAvoy, H. L. Salvo, and R. A. Moor, in Proc. IEEE 1984 Ultrasonics Symposium, Dallas, Tex., Nov, 14–16, 1984 (IEEE, New York, 1982), p. 417 (1984).

    Google Scholar 

  41. R. Holland, Design of Resonant Piezoelectric Devices (M.I.T. Press, Cambridge, 1979).

    Google Scholar 

  42. H. F. Tiersten, Linear Piezoelectric Plate Vibrations (Plenum, New York, 1969).

    Google Scholar 

  43. J. Zelenka, Tesla Electronics 11, 105 (1978).

    Google Scholar 

  44. S. E. Khaikin, Physical Fundamentals of Mechanics (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  45. K. K. Baranskii, Doctoral Dissertation in Mathematical Physics (Mosk. Gos. Univ., Moscow, 1981).

    Google Scholar 

  46. R. D. Michalec, P. Mikula, L. Sedláková, et al. J. Appl. Crystallography 8, 345–351 (1975).

    Article  Google Scholar 

  47. A. W. Warner, R. Onoe and G. Coquinm J. Acoust. Soc. Amer. 6, 1223 (1967).

    Article  Google Scholar 

  48. Y. Y. Zhu, S. N. Zhu, and N. B. Ming, J. Phys. D: Appl. Phys. 29, 185 (1996).

    Article  Google Scholar 

  49. S. E. Bankov and S. A. Nikitov, Radiotekh. Elektron. (Moscow) 52, 1301 (2007) [J. Commun. Technol. Electron. 52, 1201 (2007)].

    Google Scholar 

  50. Yu. V. Gulyaev, S. A. Nikitov, L. V. Zhivotovskii, et al., Pis’ma Zh. Eksp. Teor. Fiz. 77, 670 (2003) [JETP Letters 77, 567 (2003)].

    Google Scholar 

  51. M. V. Ryabko, S. A. Nikitov, and Yu. K. Chamorovskii, Radiotekh. Elektron. (Moscow) 52, 1266 (2007) [J. Commun. Technol. Electron. 52, 1171 (2007)].

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © V.V. Krutov, E.A. Zasovin, V.G. Mikhalevich, A.S. Sigov, A.A. Shchuka, 2010, published in Radiotekhnika i Elektronika, 2010, Vol. 55, No. 9, pp. 1103–1112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krutov, V.V., Zasovin, E.A., Mikhalevich, V.G. et al. Formation of photon ferroelectric crystals with the use of quasi-standing acoustic waves. J. Commun. Technol. Electron. 55, 1035–1043 (2010). https://doi.org/10.1134/S1064226910090093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226910090093

Keywords

Navigation