Skip to main content
Log in

LED modules with electrodynamic systems: Prospects for the development based on nanotechnologies

  • Novel Radio Systems and Elements
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The development of LED modules based on electrodynamic systems with quantum wires and dots is analyzed. Microwave devices are employed as analogs. It is demonstrated that modern nanotechnologies allow the application of concepts used in the development of optical electrodynamic systems for the creation of effective LEDs and semiconductor lasers. Various configurations of LEDs based on quarter-wave multiresonator systems that contain high-quality stabilizing half-wave semiconductor resonators are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. E. Schubert, Light-emitting Diodes (Cambridge University Press, Cambridge, Uk, 2003; Fizmatlit, Moscow, 2008).

    Google Scholar 

  2. F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987).

    Article  Google Scholar 

  3. T. Nakayama, Y. Itoh, and A. Kakuta, Appl. Phys. Lett. 63, 594 (1993).

    Article  Google Scholar 

  4. I. V. Lebedev, Microwave Devices and Technology (Vysshaya Shkola, Moscow, 1970), Vol. 1 [in Russian].

    Google Scholar 

  5. V. M. Berezin, V. S. Buryak, E. M. Guttsait, and V. P. Marin, Microwave Electronic Devices (Vysshaya Shkola, Moscow, 1985) [in Russian].

    Google Scholar 

  6. E. M. Guttsait, Microwave Devices and Technology (Radio i Svyaz’, Moscow, 1994) [in Russian].

    Google Scholar 

  7. B. A. Matveev, Yu. M. Zadiranov, N. V. Zotova, et al., in Thes. Sci.-Technolog. Forum on Nanotechnology, Moscow, Dec. 3–5, 2008 (Rosnanotekh, Moscow, 2008), Vol. 1, p. 136.

    Google Scholar 

  8. Zh. I. Alferov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32(1), 3 (1998).

    Google Scholar 

  9. A. K. Zvezdin, Priroda (Moscow, Russ. Fed.), No. 10, 15 (2004).

  10. V. Ya. Demikhovskii, Soros. Obraz. Zh., No. 5, 80 (1997).

  11. I. A. Aleksandrov, K. S. Zhuravlev, V. G. Mansurov, and A. Yu. Nikitin, in Nitrides of Gallium, Indium and Aluminium — Structures and Devices (Thes. VI All-Russ. Conf., St. Petersburg, June 18–20, 2008) (Ioffe Phys.-Techn. Inst. RAN, St. Petersburg, 2008), p. 210.

    Google Scholar 

  12. I. A. Aleksandrov, K. S. Zhuravlev, and V. G. Mansurov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 43, 797 (2009) [Semiconductors 43, 768 (2009)].

    Google Scholar 

  13. V. S. Sizov, A. A. Gutkin, A. V. Sakharov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 43, 836 (2009) [Semiconductors 43, 807 (2009)].

    Google Scholar 

  14. I. Koef, F. Fisher, M. Legge, et al., Fotonika, No. 4, 12 (2008).

  15. http://nano.msu.ru/education/courses/basics/materials

  16. R. F. Feinman, Ross. Khim. Zh. 46(5), 4 (2002).

    Google Scholar 

  17. E. M. Guttsait, Svetotekhnika, No. 3, 28 (2009).

  18. E. M. Guttsait, in Rus. Light Engineering Internet Conf., June 3–16 2009.

  19. E. M. Guttsait and V. E. Maslov, in Thes. Sci.-Technolog. Forum on Nanotechnology, Moscow, Dec. 3–5, 2008 (Rosnanotekh, Moscow, 2008), Vol. 1, p. 150 [in Russian].

    Google Scholar 

  20. S. E. Bankov, A. A. Kurushin, and V. D. Razevig, Analysis and Optimization of 3D Microwave Structures Using HFSS (Solon, Moscow, 2005) [in Russian].

    Google Scholar 

  21. E. M. Guttsait and A. A. Kurushin, in Semiconductor Lasers and Laser-Based Systems (Proc. VII Belarus-Russ. Seminar, Minsk, Belarus, June 1–5, 2009) (Stepanov Institut Fiz. NAN Belarus, Minsk, 2009), p. 145.

    Google Scholar 

  22. R. Mueller-Mach and G. O. Mueller, White Light from Emitting Diodes for Illumination (Agilent Technologies, Agilent Laboratories Communications and Optics Research Laboratory, Palo Alto, 2005), Part 2.

    Google Scholar 

  23. M. L. Badgutdinov, E. M. Guttsait, L. M. Kogan, et al., Svetotekhnika, No. 5, 46 (2007).

  24. E. M. Guttsait, A. A. Kurushin, and V. E. Maslov, in Thes. II Int. Sci.-Technolog. Forum on Nanotechnology, Moscow, Oct. 6-8, 2009 (Rosnanotekh, Moscow, 2009), p. 67.

    Google Scholar 

  25. E. D. Shlifer, Calculation and Designing of Inverted Coaxial Magnetrons (MEI, Moscow, 1991) [in Russian].

    Google Scholar 

  26. E. M. Guttsait, Svetotekhnika, No. 1, 25 (2010).

  27. A. E. Zaitsev, in Radio Engineering. Republican Inter-departmental Scientific-and-technical Collection (Kiev. Politekhn. Inst., Kiev, 1969), No. 9, p. 74 [in Russian].

    Google Scholar 

  28. G. K. Farney, US Patent no. 3427499 (11.02.1969).

  29. E. D. Shlifer, Itogi Nauki Tekh., Ser.: Elektronika, 17, 169 (1985).

    Google Scholar 

  30. Yu. D. Tret’yakov and E. A. Gudilin, in Thes. II Int. Sci.-Technolog. Forum on Nanotechnology, Moscow, Oct. 6–8, 2009 (Rosnanotekh, Moscow, 2009), p. 538.

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © E.M. Guttsait, A.A. Kurushin, 2010, published in Radiotekhnika i Elektronika, 2010, Vol. 55, No. 8, pp. 999–1016.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guttsait, E.M., Kurushin, A.A. LED modules with electrodynamic systems: Prospects for the development based on nanotechnologies. J. Commun. Technol. Electron. 55, 938–954 (2010). https://doi.org/10.1134/S1064226910080139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226910080139

Keywords

Navigation