Skip to main content
Log in

Nonlinear theory of the isothermal ion-acoustic waves in the warm degenerate plasma

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The collisionless unmagnetized degenerate plasma with zero-temperature components is considered. The exact barometric formulas for the electron and ion degenerate gases and the exact expressions for the electron and ion Debye radii are derived. A dispersion relation for the isothermal ion-acoustic waves is obtained and analyzed and an exact solution for the linear velocity of the ion sound is found. The domains of parameters in which the soliton solutions can be found are determined using the analysis of the dispersion relation. The nonlinear theory of the isothermal ion-acoustic waves is developed and employed to obtain and to analyze the exact solution of the original equations. The analysis is based on the method of the Bernoulli pseudopotential. The ranges of the phase velocities of the periodic ion-acoustic waves and the soliton velocities are determined. It is demonstrated that the ranges are not overlapped and that the soliton velocity cannot be less than the linear velocity of the ion sound. The profiles of physical quantities in the periodic wave and soliton are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Saakyan, Equilibrium Configurations of Degenerate Gas Masses (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  2. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects (Mir, Moscow, 1985; Wiley, New York, 1983).

    Google Scholar 

  3. V. E. Fortov, Extremal States of Substance on the Earth and in Space (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  4. V. V. Vladimirov, A. F. Volkov, and E. Z. Meilikhov, Plasma of Semiconductors (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  5. A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Fundamentals of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978) [in Russian].

    Google Scholar 

  6. M. C. Steele and B. Vural, Wave Interactions in Solid State Plasmas (McGraw-Hill, New York, 1969; Atomizdat, Moscow, 1973).

    MATH  Google Scholar 

  7. P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas (Academic, London, 1973; Mir, Moscow, 1975).

    Google Scholar 

  8. M. V. Kuzelev and A. A. Rukhadze, Methods of the Theory of Waves in Dispersive Media (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  9. D. B. Melrose, Quantum Plasmadynamics: Unmagnetized Plasmas. Lect. Notes Phys. 735 (Springer, New York, 2008).

    MATH  Google Scholar 

  10. M. V. Kuzelev and A. A. Rukhadze, Usp. Fiz. Nauk 169, 687 (1999).

    Article  Google Scholar 

  11. G. Manfredi and F. Haas, Phys. Rev. B 64, 075316 (2001).

    Article  Google Scholar 

  12. A. E. Dubinov and A. A. Dubinova, Fiz. Plazmy 33, 935 (2007) [Plasma Phys. Rep. 33, 859 (2007)].

    Google Scholar 

  13. W. Masood, A. Mushtaq, and R. Khan, Phys. Plasmas 14, 123702 (2007).

    Article  Google Scholar 

  14. Q. Haque, Phys. Plasmas 15, 094502 (2008).

    Article  Google Scholar 

  15. A. E. Dubinov, Prikl. Mekh. Tekh. Fiz. 48(5), 3 (2007).

    Google Scholar 

  16. A. E. Dubinov and A. A. Dubinova, Fiz. Plazmy 34, 442 (2008) [Plasma Phys. Rep. 34, 403 (2008)].

    Google Scholar 

  17. A. E. Dubinov and M. A. Sazonkin, Fiz. Plazmy 35, 18 (2009) [Plasma Phys. Rep. 35, 14 (2009)].

    Google Scholar 

  18. B. M. Mladek, G. Kahl, and M. Neumann, J. Chem. Phys. 124, 064503 (2006).

    Article  Google Scholar 

  19. F. Haas and M. Lazar, Phys. Rev. E 77, 046404 (2008).

    Article  Google Scholar 

  20. B. Eliasson and P. K. Shukla, Phys. Scr. 78, 025503 (2008).

    Article  Google Scholar 

  21. B. Eliasson and P. K. Shukla, Phys. Plasmas 15, 102102 (2008).

    Article  Google Scholar 

  22. G. N. Pykhteev and I. N. Meleshko, Polylogarithms, Their Properties, and the Corresponding Computational Methods (Belorus. Gos. Univ., Minsk, 1976) [in Russian].

    Google Scholar 

  23. L. Lewin, Polylogarithms and Associated Functions (North Holland, New York-Oxford, 1981).

    MATH  Google Scholar 

  24. A. E. Dubinov, Fiz. Plazmy 33, 239 (2007) [Plasma Phys. Rep. 33, 210 (2007)].

    Google Scholar 

  25. Ch. Sack and H. Schamel, Plasma Phys. Controlled Fusion 27, 717 (1985).

    Article  Google Scholar 

  26. U. M. Abdelsalam, W. M. Moslem, and P. K. Shukla, Phys. Lett. A 372, 4057 (2008).

    Article  Google Scholar 

  27. A. A. Dubinova, Zh. Tekh. Fiz. 79(2), 48 (2009) [Tech. Phys. 54, 210 (2009)].

    Google Scholar 

  28. I. A. Kvasnikov, Statistical Physics. Theory of Equilibrium Systems (URSS, Moscow, 2002) [in Russian].

    Google Scholar 

  29. F. Chen, Introduction to Plasma Physics (Plenum, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  30. U. M. Abdelsalam, W. M. Moslem, and P. K. Shukla, Phys. Plasmas 15, 052303 (2008).

    Article  Google Scholar 

  31. S. Ali and P. K. Shukla, Phys. Lett. A 372, 4827 (2008).

    Article  Google Scholar 

  32. S. Ali and P. K. Shukla, Phys. Plasmas 13, 022313 (2006).

    Article  Google Scholar 

  33. S. A. Khan and A. Mushtaq, Phys. Plasmas 14, 083703 (2007).

    Article  Google Scholar 

  34. A. Mushtaq, Phys. Plasmas 14, 113701 (2007).

    Article  MathSciNet  Google Scholar 

  35. L. A. Rio and P. K. Shukla, J. Plas. Phys. 74(1), 1 (2008).

    Google Scholar 

  36. L. D. Landau and E. M. Lifshitz (Lifshits), Statistical Physics, Parts 1 and 2, 3rd ed. (Nauka, Moscow, 1976; Pergamon Press, Oxford, 1980).

    Google Scholar 

  37. V. F. Zaitsev and A. D. Polyanin, Handbook on Ordinary Differential Equations (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  38. I. A. Maron, Differential and Integral Calculus in Praxis and Problems. Functions of One Variable (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  39. E. C. Titchmarsh, The Zeta-Function of Riemann (Cambridge (Eng.) Univ. Press, Cambridge, 1930; Inostrannaya Literatura, Moscow, 1953).

    MATH  Google Scholar 

  40. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics (Addison-Wesley, Reading, Massachusetts, 1994; Mir, Moscow, 1998).

    MATH  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © A.E. Dubinov, A.A. Dubinova, M.A. Sazonkin, 2010, published in Radiotekhnika i Elektronika, 2010, Vol. 55, No. 8, pp. 968–981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubinov, A.E., Dubinova, A.A. & Sazonkin, M.A. Nonlinear theory of the isothermal ion-acoustic waves in the warm degenerate plasma. J. Commun. Technol. Electron. 55, 907–920 (2010). https://doi.org/10.1134/S1064226910080097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226910080097

Keywords

Navigation