Skip to main content
Log in

Solving the problem of diffraction of an optical-band electromagnetic wave by metal nanostructured aperture arrays with the use of the method of impedance boundary conditions

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The problem of diffraction of an optical wave by a 2D periodic metal aperture array with square, circular, and ring apertures is solved with allowance for the finite permittivity of a metal in the optical band. The correctness of the obtained results is verified through comparison with experimental data. It is shown that the transmission coefficient can be substantially greater than the corresponding value reached in the case of diffraction by a grating in a perfectly conducting screen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, Phys. Rev. Lett. 86, 1110 (2001).

    Article  Google Scholar 

  2. L. Martin-Moreno, F. J. Garcia-Vidal, and H. J. Lezec, Phys. Rev. Lett. 86, 1114 (2001).

    Article  Google Scholar 

  3. U. Schroter and D. Heitmann, Phys. Rev. B 58, 15419 (1998).

    Article  Google Scholar 

  4. J. Vuckovic, M. Loncar, and A. Scherer, IEEE J. Quantum Electron. 36, 1131 (2000).

    Article  Google Scholar 

  5. S. Shinada, J. Hashizume, and F. Koyama, Appl. Phys. Lett. 83, 836 (2003).

    Article  Google Scholar 

  6. P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, IEEE J. Sel. Top. Quantum Electron. 8, 378 (2002).

    Article  Google Scholar 

  7. http://www.luxpop.com.

  8. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, Phys. Rev. B 62, 16100 (2000).

    Article  Google Scholar 

  9. L. A. Vainshtein, Theory of Diffraction and the Factorization Method (Sovetskoe Radio, Moscow, 1966) [in Russian].

    Google Scholar 

  10. A. M. Lerer, V. V. Makhno, P. V. Makhno, and A. A. Yachmenov, Radiotekh. Elektron. (Moscow) 52, 424 (2007) [J. Commun. Technol. Electron. 52, 399 (2007)].

    Google Scholar 

  11. D. E. Zelenchuk, A. M. Lerer, V. V. Makhno, and P. V. Makhno, Elektromagn. Volny Elektron. Sist. 12(6), 41 (2007).

    Google Scholar 

  12. I. A. Kaz’min, A. M. Lerer, and V. N. Shevchenko, Radiotekh. Elektron. (Moscow) 53, 191 (2008) [J. Commun. Technol. Electron. 53, 177 (2008)].

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © D.E. Zelenchuk, I.A. Kaz’min, A.M. Lerer, V.V. Makhno, P.V. Makhno, 2009, published in Radiotekhnika i Elektronika, 2009, Vol. 54, No. 4, pp. 418–422.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelenchuk, D.E., Kaz’min, I.A., Lerer, A.M. et al. Solving the problem of diffraction of an optical-band electromagnetic wave by metal nanostructured aperture arrays with the use of the method of impedance boundary conditions. J. Commun. Technol. Electron. 54, 399–403 (2009). https://doi.org/10.1134/S1064226909040044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226909040044

PACS numbers

Navigation