Skip to main content
Log in

Comparison of adaptive-network-based fuzzy inference system models for resonant frequency computation of circular microstrip antennas

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

This paper presents a method based on adaptive-network-based fuzzy inference system (ANFIS) to compute the resonant frequency of a circular microstrip antenna (MSA). The ANFIS is a class of adaptive networks which are functionally equivalent to fuzzy inference systems (FISs). Seven optimization algorithms, least-squares, nelder-mead, differential evolution, genetic, hybrid learning, particle swarm, and simulated annealing, are used to determine optimally the design parameters of the ANFIS. The results of the ANFIS models show better agreement with the experimental results, as compared to the results of previous methods available in the literature. When the performances of ANFIS models are compared with each other, the best result is obtained from the ANFIS model trained by the least-squares algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. J. Bahl and P. Bhartia, Microstrip Antennas (Artech House, Dedham, 1980).

    Google Scholar 

  2. Microstrip Antenna Design, Ed. by K. C. Gupta, A. Benalla (Artech House, Canton, 1988).

    Google Scholar 

  3. Handbook of Microstrip Antennas, IEE Electromag. Wave Ser. No. 28. V. 1, 2, Ed. by J. R. James, P. S. Hall (Peter Peregrinus, London, 1989).

    Google Scholar 

  4. Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays, Ed. by D. M. Pozar and D. H. Schaubert (IEEE Press, New York, 1995).

    Google Scholar 

  5. R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook (Artech House, Canton, 2001).

    Google Scholar 

  6. J. Watkins, Electron. Lett. 5, 524 (1969).

    Article  Google Scholar 

  7. T. Itoh and R. Mittra, IEEE Trans. Microwave Theory Tech. 21, 431 (1973).

    Article  Google Scholar 

  8. T. Itoh and R. Mittra, AEU-Int. J. Electronics Commun. 27, 456 (1973).

    Google Scholar 

  9. I. Wolff and N. Knoppik, IEEE Trans. Microwave Theory Tech. 22, 857 (1974).

    Article  Google Scholar 

  10. J. Q. Howell, IEEE Trans. Antennas Propag. 23, 90 (1975).

    Article  Google Scholar 

  11. S. R. Borkar and R. F. M. Yang, IEEE Trans. Microwave Theory Tech. 23, 588 (1975).

    Article  Google Scholar 

  12. L. C. Shen, S. A. Long, M. R. Allerding, and M. D. Walton, IEEE Trans. Antennas Propag. 25, 595 (1977).

    Article  Google Scholar 

  13. A. G. Derneryd, Microwave J. 21(5), 77 (1978).

    Google Scholar 

  14. A. G. Derneryd, IEEE Trans. Antennas Propag. 27, 660 (1979).

    Article  Google Scholar 

  15. K. R. Carver, in Proc. Workshop on Printed Circuit Antenna Technology, Las Cruces, Oct., 1979 (New Mexico State Univ., Las Cruces, 1979), p. 7.1.

    Google Scholar 

  16. W. C. Chew and J. A. Kong, in Proc. IEEE Int. Symp. on Antennas Propag. Soc. Quebec, Canada, 1980 (IEEE, New York, 1980), p. 621.

    Google Scholar 

  17. W. C. Chew and J. A. Kong, IEEE Trans. Microwave Theory Tech. 28, 98 (1980).

    Article  Google Scholar 

  18. C. Wood, IEE Proc., Part H: Microwaves, Antennas Propag. 128, 69, (1981).

    Google Scholar 

  19. J. S. Dahele and K. F. Lee, IEEE Trans. Antennas Propag. 31, 358 (1983).

    Article  Google Scholar 

  20. J. S. Dahele and K. F. Lee, IEE Proc., Part H: Microwaves, Antennas Propag. 132, 455, (1985).

    Google Scholar 

  21. F. Abboud, J. P. Damiano, and A. Papiernik, Electron. Lett. 24, 1104 (1988).

    Article  Google Scholar 

  22. Q. Liu and W. C. Chew, IEE Proc., Part H: Microwaves, Antennas Propag. 135, 289, (1988).

    Google Scholar 

  23. F. Abboud, J. P. Damiano, and A. Papiernik, IEEE Trans. Antennas Propag. 38, 1882 (1990).

    Article  Google Scholar 

  24. K. Antoszkiewicz and L. Shafai, IEEE Trans. Antennas Propag. 38, 942 (1990).

    Article  Google Scholar 

  25. J. S. Roy and B. Jecko, Int. J. Microwave and Millimeter-Wave Computer-Aided Eng. 3(1), 67 (1993).

    Article  Google Scholar 

  26. K. Guney, Int. J. Electronics 77, 377 (1994).

    Article  Google Scholar 

  27. K. F. Lee and Z. Fan, Microwave Opt. Technol. Lett. 7, 570 (1994).

    Article  Google Scholar 

  28. N. Kumprasert and W. Kiranon, IEEE Trans. Antennas Propag. 43, 1331 (1995).

    Google Scholar 

  29. P. Mythili, A. Das, IEE Proc., Part H: Microwaves, Antennas Propag. 145, 159 (1998)30. K. P. Ray and G. Kumar, Microwave Opt. Technol. Lett. 23 (2), 114 (1999).

    Article  Google Scholar 

  30. K. P. Ray and G. Kumar, Microwave and Opt. Technol. Lett. 23, no. 2, 114 (1999).

    Article  Google Scholar 

  31. S. Sagiroglu, K. Guney, and M. Erler, Int. J. RF and Microwave Computer-Aided Eng. 8, 270 (1998).

    Article  Google Scholar 

  32. N. Karaboga, K. Guney, and A. Akdagli, Int. J. Electronics 86, 825 (1999).

    Article  Google Scholar 

  33. A. Akdagli and K. Guney, IEE Proc., Part H: Microwaves, Antennas Propag. 147, 156, (2000).

    Article  Google Scholar 

  34. C. S. Gurel and E. Yazgan, Int. J. Electronics 87, 973 (2000).

    Article  Google Scholar 

  35. C. S. Gurel and E. Yazgan, Int. J. RF and Microwave Computer-Aided Eng. 10, 120 (2000).

    Article  Google Scholar 

  36. D. Guha, IEEE Trans. Antennas Propag. 49, 55 (2001).

    Article  Google Scholar 

  37. C. Yildiz, S. S. Gultekin, K. Guney, and S. Sagiroglu, AEU-Int. J. Electronics Commun. 56, 396 (2002).

    Article  Google Scholar 

  38. A. K. Verma, Nasimuddin, Microwave Opt. Technol. Lett. 34(2), 75 (2002).

    Article  Google Scholar 

  39. G. Angiulli and M. Versaci, IEEE Trans. Magn. 39, 1333 (2003).

    Article  Google Scholar 

  40. M. D. Deshpande, D. G. Shively, and C. R. Cockrell, NASA Tech. Paper, No. 3386 (1993). http://librarydspace.larc.nasa.gov/dspace/jsp/help/index.html

  41. J.-S. R. Jang, IEEE Trans. Syst. Man Cybern. 23, 665 (1993).

    Article  Google Scholar 

  42. J.-S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence (Prentice-Hall, Upper Saddle River, 1997).

    Google Scholar 

  43. E. Bokshtein, D. Shmaltz, O. Herbst, et al., Robotics Autonomous Syst. 33(2–3), 125 (2000).

    Article  Google Scholar 

  44. K. Guney and N. Sarikaya, Appl. Computational Electromagnetics Soc. J. 19, 188 (2004).

    Google Scholar 

  45. K. Guney and N. Sarikaya, Int. J. Infrared Millimeter Waves 25, 703 (2004).

    Article  Google Scholar 

  46. K. Guney and N. Sarikaya, J. Electromagn. Waves and Appl. 18(1), 23 (2004).

    Article  Google Scholar 

  47. K. Guney and N. Sarikaya, Int. J. RF and Microwave Computer-Aided Eng. 14, 134 (2004).

    Article  Google Scholar 

  48. K. Guney and N. Sarikaya, Electrical Eng. 88, 201 (2006).

    Article  Google Scholar 

  49. K. Guney and N. Sarikaya, Int. J. Infrared Millimeter Waves 27, 219 (2006).

    Article  Google Scholar 

  50. K. Guney and N. Sarikaya, Microwave Opt. Technol. Lett. 48, 1606 (2006).

    Article  Google Scholar 

  51. K. Guney and N. Sarikaya, IEEE Trans. Antennas Propag. 55, 659 (2007).

    Article  Google Scholar 

  52. K. Guney and N. Sarikaya, Progress in Electromagnetics Research-PIER 72, 279 (2007).

    Article  Google Scholar 

  53. S. Ozer, K. Guney, and A. Kaplan, Int. J. RF and Microwave Computer-Aided Eng. 10, 108 (2000).

    Article  Google Scholar 

  54. A. Kaplan, K. Guney, and S. Ozer, Int. J. Electron. 88, 189 (2001).

    Article  Google Scholar 

  55. I. Turkmen and K. Guney, AEU-Int. J. Electronics Commun. 58, 349 (2004).

    Article  Google Scholar 

  56. I. Turkmen and K. Guney, Progress in Electromagnetics Research-PIER 65, 169 (2006).

    Article  Google Scholar 

  57. F. Daldaban, N. Ustkoyuncu, and K. Guney, Energy Convers. Manage 47, 485 (2006).

    Article  Google Scholar 

  58. K. Levenberg, Quarterly Appl. Math. 2(2), 164 (1944).

    MATH  MathSciNet  Google Scholar 

  59. D. W. Marquardt, Soc. Industr. Appl. Math. (SIAM) J. Appl. Math 11, 431 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  60. J. E. Dennis, Nonlinear Least-Squares, State of the Art in Numerical Analysis (Academic, London, 1977).

    Google Scholar 

  61. W. Spendley, G. R. Hext, and F. R. Himsworth, Technometrics 4, 441 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  62. J. A. Nelder and R. Mead, Computer J. 7, 308 (1965).

    MATH  Google Scholar 

  63. K. V. Price, in Proc. Biennial Conf. of the North American on Fuzzy Information Processing. Society (NAFIPS 1996), Berkeley, USA, June 20–22, 1996 (IEEE, Piscataway, N.J., 1996) p. 524.

    Google Scholar 

  64. R. M. Storn and K. V. Price, J. Global Optim. 11, 341 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  65. K. V. Price, R. M. Storn, and J. Lampinen, Differential Evolution: A Practical Approach To Global Optimization (Springer, Berlin, 2005).

    MATH  Google Scholar 

  66. J. Holland, Adaptation in Natural and Artificial Systems (Univ. Michigan Press, Ann Arbor, 1975).

    Google Scholar 

  67. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison Wesley, Reading, 1989).

    MATH  Google Scholar 

  68. J. Kennedy and R. Eberhart, in Proc. IEEE Int. Conf. on Neural Networks, Perth, 27 Oct.–1 Nov., 1995 (IEEE, New York, 1995), Vol. 4, p. 1942.

    Google Scholar 

  69. R. C. Eberhart and J. Kennedy, in Proc. Sixth Int. Symp. on Micro Machine Human Science (MHS’95). Nagoya, Oct. 4–6, 1995 (IEEE, New York, 1995), p. 39.

    Book  Google Scholar 

  70. S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, Science 220(4598), 671 (1983).

    Article  MathSciNet  Google Scholar 

  71. M. Pincus, Oper. Res. 18, 1225 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  72. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., J. Chem. Phys. 21, 1087 (1953).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Guney.

Additional information

Published in Russian in Radiotekhnika i Elektronika, 2009, Vol. 54, No. 4, pp. 389–400.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guney, K., Sarikaya, N. Comparison of adaptive-network-based fuzzy inference system models for resonant frequency computation of circular microstrip antennas. J. Commun. Technol. Electron. 54, 369–380 (2009). https://doi.org/10.1134/S1064226909040019

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226909040019

PACS numbers

Navigation