Skip to main content
Log in

Propagation of elastic waves in phononic crystals

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript


Propagation of elastic waves in a system of cylindrical channels embedded in a homogeneous isotropic elastic medium (a phononic crystal) is investigated. A multipole method is proposed for simulation of wave propagation in such structures. The dispersion characteristics of wave propagation in systems consisting of three, six, and seven cylindrical channels are calculated. The results are compared to the data corresponding to wave propagation along a single channel. The computational efficiency of the method and its applicability to simulation of the propagation of elastic waves in large phononic crystals are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: Road from Theory to Practice (Kluwer Acad. Publ., Boston, 2002).

    Google Scholar 

  2. M. Sigals, M. S. Kushwaha, E. N. Economou, et al., Ztsch. Kristallogr. 220, 765 (2005).

    Article  Google Scholar 

  3. S. A. Nikitov, Yu. A. Filimonov, and Ph. Tailhades, Adv. Sci. Technol. 45, 1355 (2006).

    Google Scholar 

  4. S. A. Nikitov, M. V. Ryabko, and Yu. K. Chamorovskii, Nano-Mikrosistem. Tekhnika, No. 5, 33 (2005).

  5. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, Orlando, 1976).

    Google Scholar 

  6. Tanaka Yukihiro and Tamura Shin-Ichiro, Phys. Rev. B 60, 294 (1999).

    Google Scholar 

  7. Feng Liang, Liu Xiao-Ping, Lu Ming-Hui, et al., Phys. Rev. Lett. 96, 014301-1 (2006).

  8. V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1967).

    Google Scholar 

  9. S. Kushwaha, P. Halevi, G. Martinez, Phys. Rev. B 49, 2313 (1994).

    Article  Google Scholar 

  10. C. G. Poulton, A. B. Movchan, and R. C. McPhedran, Proc. R. Soc. London, Ser. B 456, 2543 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  11. P. F. Hsieh, T. T. Wu, and J. H. Sun, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 148 (2006).

    Article  Google Scholar 

  12. P. Langlet, A. C. Hladky-Hennion, and J. N. Decarpigny, J. Acoust. Soc. Am. 98, 2792 (1995).

    Article  Google Scholar 

  13. L. M. Brekhovskikh and O. A. Godin, Acoustics of Stratified Media (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  14. R. N. Thurston, J. Accoust. Soc. Am. 64, 1 (1978).

    Article  MATH  Google Scholar 

  15. G. Strike, Geophysics Prospecting 7, 273 (1959).

    Article  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Nauka, Moscow, 1987; Pergamon, New York, 1986) [in Russian].

    Google Scholar 

  17. T. P. White, B. T. Kuhlmey, R. C. McPhedran, et al., J. Opt. Soc. Am. B: Opt. Phys. 19, 2322 (2002).

    Article  Google Scholar 

  18. V. K. Romanko, Course of Differential Equations and Calculus of Variations (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. V. Lisenkov.

Additional information

Original Russian Text © I.V. Lisenkov, S.A. Nikitov, R.S. Popov, Chul Koo Kim, 2007, published in Radiotekhnika i Elektronika, 2007, Vol. 52, No. 9, pp. 1122–1134.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisenkov, I.V., Nikitov, S.A., Popov, R.S. et al. Propagation of elastic waves in phononic crystals. J. Commun. Technol. Electron. 52, 1037–1048 (2007).

Download citation

  • Received:

  • Issue Date:

  • DOI:

PACS numbers