Skip to main content
Log in

Temperature dependence of the electrical parameters of frozen sand at low frequencies

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The permittivity of moist sand is measured at frequencies of 120 Hz and 1, 10, and 100 kHz in the temperature range +20 to-150°C. It is found that the loss tangent is close to unity at the critical temperature at which through conduction vanishes. In the case of conduction of frozen sand, it is discovered that the sand demonstrates a permittivity hysteresis if a quasi-static electric field is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Bordonskii and T. G. Fillipova, Kondens. Sredy i Mezhfazn. Granitsy 4(1), 21 (2002).

    Google Scholar 

  2. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Conductors (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  3. R. W. P. King and G. S. Smith, Antennas in Matter: Fundamentals. Theory and Applications (MIT, London, 1981; Mir, Moscow, 1984).

    Google Scholar 

  4. A. L. Efros and B. I. Shklovskii, Phys. Status Solidi B 76, 475 (1976).

    Google Scholar 

  5. V. E. Dubrov, M. E. Levinstein, and M. S. Shur, Zh. Eksp. Teor. Fiz. 70, 2014 (1976) [JETP 43, 1050 (1976)].

    Google Scholar 

  6. A. Gutina, Y. Haruvy, I. Gilath, et al., J. Phys. Chem. B. 103, 5454 (1999).

    Article  Google Scholar 

  7. Y. Feldman, N. Kozlovich, Y. Alexandrov, et al., Phys. Rev. E. 54, 5420 (1996).

    Article  Google Scholar 

  8. Yu. P. Emets, Zh. Eksp. Teor. Fiz. 121, 1339 (2002) [JETP 94, 1149 (2002)].

    Google Scholar 

  9. A. R. von Hippel, Dielectrics and Waves (Wiley, New York, 1954; Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

  10. V. A. Berstein and V. M. Egorov, Differential Scanning Calorimetry in Polymer Physics and Chemistry (Khimiya, Leningrad, 1990) [in Russian].

    Google Scholar 

  11. V. Petrenko and R. W. Whitworth, Physics of Ice (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  12. S. V. Shevkunov, Dokl. Akad. Nauk 376, 318 (2001) [Dokl. Phys. 46, 12 (2001)].

    MATH  Google Scholar 

  13. V. M. Kornilov and A. N. Lachinov, Zh. Eksp. Teor. Fiz. 111, 1513 (1997) [JETP 84, 833 (1997)].

    Google Scholar 

  14. A. M. Dykhne, S. Yu. Vasil’ev, O. A. Petrii, et al., Dokl. Akad. Nauk 368, 467 (1999) [Dokl. Phys. 44, 653 (1999)].

    Google Scholar 

  15. A. D. Frolov, Electric and Elastic Properties of Frozen Rocks and Ice (ONTI PNTs RAN, Pushchino, 1998) [in Russian].

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © G.S. Bordonskii, A.O. Orlov, T.G. Filippova, 2006, published in Radiotekhnika i Elektronika, 2006, Vol. 51, No. 3, pp. 314–319.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordonskii, G.S., Orlov, A.O. & Filippova, T.G. Temperature dependence of the electrical parameters of frozen sand at low frequencies. J. Commun. Technol. Electron. 51, 297–302 (2006). https://doi.org/10.1134/S1064226906030065

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226906030065

PACS numbers

Navigation