Skip to main content
Log in

Propagation of eigenmodes in cylindrical dielectric gratings simulated using the impedance boundary conditions

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Eigenmodes propagating in cylindrical dielectric gratings (CDGs) are studied. Solution of the boundary value problem on propagation of electromagnetic waves in CDGs is reduced to solution of a system of two integrodifferential equations (IDEs) of the second kind. The singular components of the kernels of the IDEs entering the system are separated and analytically transformed. The collocation and Galerkin methods are applied to solve the first and second IDEs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hamakawa, T. Kato, G. Sasaki, and M. Higehara, Proc. 22 European Conf. on Optical Communication, ECOC’96, Oslo, Norway, 1996 (Telenor, Kjeller, 1996), p. MoC.3.6.

    Google Scholar 

  2. P. M. Tomczak, E. M. Pawlik, and K. M. Abramski, Proc. 2 Int. Conf. on Transparent Optical Networks, ICTON, Gdansk, Poland, 2000 (IEEE, Piscataway, 2000), p. 165.

    Google Scholar 

  3. C. R. Giles, J. Stone, L. W. Stulz, et al., Technol. Dig. Optic. Amplifiers and Their Applications 13, 148 (1991).

    Google Scholar 

  4. J.-M. P. Delavaux, C. R. Giles, S. W. Granlund, and C. D. Chen, Optic. Fiber Technol 2, 351 (1996).

    Google Scholar 

  5. C. R. Giles and A. McCormick, Proc. Topical Meeting on Optical Amplifiers and Their Applications, OAA’95, Davos, Switzerland, 1995 (Opt. Soc. Amer., Washington, 1995), p. Th. D1-2.

  6. C. R. Giles and S. Jiang, IEEE Photon. Technol. Lett. 9, 523 (1997).

    Google Scholar 

  7. C. R. Giles, V. Mizrahi, and T. Erdogan, IEEE Photon. Technol. Lett. 7, 126 (1995).

    Article  Google Scholar 

  8. A. D. Kersey, Optic. Fiber Technol. 2, 291 (1996).

    Google Scholar 

  9. G. Meltz, Proc. SPIE. Distributed and Multiplexed Sensors VI SPIE-2838, 2 (1996).

  10. A. D. Kersey, M. A. Davis, T. A. Berkoff, et al., Proc. SPIE. Fiber Optic and Laser Sensors XIV SPIE-2839, 40 (1996).

  11. Ames Research Center. Security System Based on Bragg Gratings in an Optic. Fiber, http://www.nasatech. com/Briefs/Mar00/ARC12092.html.

  12. Ning-Ning Feng, Gui-Rong Zhou, Chenglin Xu, Wei-Ping Huang, J. Lightwave Technol. 20, 1976 (2002).

    Google Scholar 

  13. G. I. Churyumov and I. S. Maksymov, Proc. Int. Conf. on Mathematical Methods in Electromagnetic Theory, MMET, Kiev, 2002 (IEEE, Piscataway, 2002), p. 201.

    Google Scholar 

  14. M. Koshiba and Y. Tsuji, J. Lightwave Technol. 20, 463 (2002).

    Google Scholar 

  15. A. K. Ghatak, I. C. Goyal, and R. K. Varshney, J. Lightwave Technol. 16, 697 (1998).

    Google Scholar 

  16. A. M. Lerer and A. A. Yachmenov, Radiotekh. Elektron. (Moscow) 49, 445 (2004) [J. Commun. Technol. Electron. 49, 411 (2004)].

    Google Scholar 

  17. L. A. Vainshtein, The Diffraction Theory and the Factorization Method (Sovetskoe Radio, Moscow, 1966) [in Russian].

    Google Scholar 

  18. A. M. Lerer, Radiotekh. Elektron. (Moscow) 36, 1923 (1991).

    Google Scholar 

  19. E. I. Nefedov and A. N. Sivov, Electromagnetics of Periodic Structures (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  20. E. P. Kurushin and E. I. Nefedov, Electromagnetics of Anisotropic Waveguiding Structures (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  21. T. Zinenko, A. Nosich, and Y. Okuno, IEEE Trans. Antennas Propag. 46, 1498 (1998).

    Article  Google Scholar 

  22. E. N. Vasil’ev, A. V. Polynkin, and V. V. Solodukhov, Izv. Vyssh. Uchebn. Zaved., Radioelektronika 26 (2), 72 (1983).

    Google Scholar 

  23. S. Voriskina and A. Nosish, Radiofiz. Radioastron. 2, 333 (1997).

    Google Scholar 

  24. G. A. Kalinchenko, A. G. Kyurkchan, A. M. Lerer, et al., Radiotekh. Elektron. (Moscow) 46, 1087 (2001) [J. Commun. Technol. Electron. 46, 1005 (2001)].

    Google Scholar 

  25. A. M. Lerer, Izv. Vyssh. Uchebn. Zaved., Radioelektronika 33 (5), 56 (1990).

    Google Scholar 

  26. G. A. Kalinchenko and A. M. Lerer, Radiotekh. Elektron. (Moscow) 48, 1330 (2003) [J. Commun. Technol. Electron. 48, 1221 (2003)].

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © A.M. Lerer, V.V. Makhno, A.A. Yachmenov, 2006, published in Radiotekhnika i Elektronika, 2006, Vol. 51, No. 1, pp. 46–53.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerer, A.M., Makhno, V.V. & Yachmenov, A.A. Propagation of eigenmodes in cylindrical dielectric gratings simulated using the impedance boundary conditions. J. Commun. Technol. Electron. 51, 40–47 (2006). https://doi.org/10.1134/S1064226906010050

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226906010050

Keywords

Navigation