Skip to main content
Log in

On the Effect of the Melt Cooling Rate upon Spinning on the Structure of the Surface Layers of Fe77Ni1Si9B13 Alloy Ribbons

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Fast-quenched ribbons with thicknesses of 200, 50, 30, and 20 μm have been obtained by melt spinning at hardening disk rotation speeds of 500, 1500, 2500, and 3500 rpm, respectively. The chemical composition of the ribbons has been determined by atomic emission spectroscopy on a Spectroflame Modula S spectrometer. X-ray diffraction patterns of the ribbons have obtained on a DRON-6 diffractometer (CuKα radiation) with a graphite monochromator. The effect of the melt cooling rate on the structural state of the contact and free sides of the Fe77Ni1Si9B13 alloy ribbons has been examined. It has been established that, by increasing the melt cooling rate, one can obtain fast-quenched Fe77Ni1Si9B13 alloy ribbons with different structures: X-ray amorphous at 3500, 2500, and 1500 rpm and crystalline at 500 rpm. Cooling of the melt at a quenching disk rotation speed of 500 rpm makes it possible to obtain Fe77Ni1Si9B13 alloy ribbons with crystallographic structures of three types: A2, C16, and D03 (A2 corresponds to the α-Fe(Si) phase; C16, to the Fe2B phase; and D03, to the Fe3Si phase). In the surface layers on the ribbon free side, texturing of the Fe3Si phase has been detected. It is noted that the crystal structure of the ribbons obtained by melt cooling on a quenching disk at a rotation speed of 500 rpm differs from the structure of the ribbons of this alloy crystallized from the amorphous state by annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. I. Betekhin, P. N. Butenko, A. G. Kadomtsev, V. E. Korsukov, M. M. Korsukova, B. A. Obidov, and O. V. Tolochko, Phys. Solid State 49 (12), 2223 (2007). https://doi.org/10.1134/S1063783407120025

    Article  ADS  Google Scholar 

  2. N. A. Skulkina, O. A. Ivanov, E. A. Stepanova, L. N. Shubina, P. A. Kuznetsov, and A. K. Mazeeva, Phys. Procedia 82, 69 (2016) https://doi.org/10.1016/j.phpro.2016.05.013

    Article  ADS  Google Scholar 

  3. E. V. Pustovalov, N. D. Zakharov, V. S. Plotnikov, and B. N. Grudin, Phys. Met. Metallogr. 97 (6), 626 (2004).

    Google Scholar 

  4. V. A. Volkov, V. I. Lad’yanov, and V. S. Tsepelev, Metally, No. 6, 37 (1998).

    Google Scholar 

  5. W. Fang, H. Guo-qi, Z. Peng-na, F. Tang-fu, W. Ya-juan, S. Ren-bing, and Z. Jian, Cryogenics 30, 103633 (2023). https://doi.org/10.1016/j.cryogenics.2023.103633

    Article  Google Scholar 

  6. I. I. Danilova, V. V. Markin, O. V. Smolyakova, V. E. Ro-shchin, S. I. Il’in, and Yu. N. Goykhenberg, Vest. YuUrGU, Ser. Metallurgiya, No. 9, 16 (2008).

    Google Scholar 

  7. T. Tamura and M. Li. J. Alloys Comp. 826, 154010 (2020). https://doi.org/10.1016/j.jallcom.2020.154010

    Article  Google Scholar 

  8. J. Mattson, E. Theisen, and P. Steen, Chem. Eng. Sci. 192, 1198 (2018). https://doi.org/10.1016/j.ces.2018.07.017

    Article  Google Scholar 

  9. M. Nabialek, Arch. Metall. Mater. 61 (1), 439 (2016). https://doi.org/10.1515/amm-2016-0079

    Article  Google Scholar 

  10. J. Li, H. Chen, S. Li, Q. Fang, Y. Liu, L. Liang, H. Wu, and P. K. Liaw, Mater. Sci. Eng.: A 760, 359 (2019). https://doi.org/10.1016/j.msea.2019.06.017

    Article  Google Scholar 

  11. J. E. K. Schawe and J. F. Löffler, Nature Commun. 10, 1337 (2019). https://doi.org/10.1038/s41467-018-07930-3

    Article  ADS  Google Scholar 

  12. A. Ya. Belen’kii and S. N. Zolotarev, Rasplavy, No. 4, 76 (1990).

    Google Scholar 

  13. C. T. Hu, T. Goryczka, and D. Vokoun, Scr. Mater. 50 (4), 539 (2004). https://doi.org/10.1016/j.scriptamat.2003.10.026

    Article  Google Scholar 

  14. S. Madireddi, Eng. Sci. Technol. 23 (5), 1162 (2020). https://doi.org/10.1016/j.jestch.2020.02.003

    Article  Google Scholar 

  15. V. F. Bashev, S. I. Ryabtsev, O. I. Kushnerov, N. A. Kutseva, and S. N. Antropov East.-Eur. J. Phys., No. 3, 81 (2020). https://doi.org/10.26565/2312-4334-2020-3-10

  16. S. Madireddi, Mater. Today: Proc. 38 (5), 2532 (2021). https://doi.org/10.1016/j.matpr.2020.07.550

    Article  Google Scholar 

  17. X. Cui, O. D. Zhang, X. Y. Li, and F. Q. Zu, J. Non-Cryst. Solids 452, 336 (2016), https://doi.org/10.1016/j.jnoncrysol.2016.09.015

    Article  ADS  Google Scholar 

  18. S. Öztürk, S. E. Sünbül, and K. İcin, Trans. Nonferrous Met. Soc. China 30 (5), 1169 (2020). https://doi.org/10.1016/S1003-6326(20)65287-6

    Article  Google Scholar 

  19. H. Gao, Z. Li, S. Zhou, G. Zhang, and N. T. Cui, Prog. Nat. Sci.: Mater. Int. 29 (5), 556 (2019). https://doi.org/10.1016/j.pnsc.2019.08.012

    Article  Google Scholar 

  20. Y.-G. Su, F. Chen, C.-Y. Wu, M.-H. Chang, and C.-A. Chung, ISIJ Int. 55 (11), 2383 (2015). https://doi.org/10.2355/isijinternational.ISIJINT-2015-349

    Article  Google Scholar 

  21. X. Cui, Q. D. Zhang, X. Y. Li, and F. Q. Zu, J. Non-Cryst. Solids 452, 336 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.09.015

    Article  ADS  Google Scholar 

  22. I. I. Usatyuk, I. A. Novokhatskii, and Yu. F. Kaverin, Metally, No. 2, 127 (1994).

    Google Scholar 

  23. V. V. Molokanov, M. I. Petrzhik, T. N. Mikhailova, V. P. Manov, P. S. Popel’, and V. E. Sidorov, Rasplavy, No. 4, 40 (2000).

  24. G. V. Shishalova, M. A. Kulakova, and E. E. Varlashova, Anal. Kontrol 7 (2), 186 (2003).

    Google Scholar 

  25. A. A. Pupyshev and D. A. Danilova, Anal. Kontrol 11 (2-3), 131 (2007).

    Google Scholar 

  26. Rapidly Hardened Metals, Sb. Nauchn. Tr., Ed. by B. Kantor (Metallurgiya, Moscow, 1983) [in Russian].

    Google Scholar 

  27. D. N. Kharlamov, V. A. Volkov, V. I. Lad’yanov, and B. P. D’yakonov, Metally, No. 2, 196 (2002).

  28. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and V. I. Fedorov, Phys. Solid State 54 (9), 1935 (2012). https://doi.org/10.1134/S1063783412090107

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out on the equipment of the Center for Collective Use “Surface and New Materials” of the Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences.

Funding

This study was carried out within the framework of research topic no. 121030100001-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Lad’yanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lad’yanov, V.I., Konovalov, M.S., Mokrushina, M.I. et al. On the Effect of the Melt Cooling Rate upon Spinning on the Structure of the Surface Layers of Fe77Ni1Si9B13 Alloy Ribbons. Tech. Phys. Lett. (2024). https://doi.org/10.1134/S1063785024700184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1063785024700184

Keywords:

Navigation