Skip to main content
Log in

Fully Three-Dimensional Coupled Simulation of Flame Propagation through a Polymer under the Action of a Heat Flux

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The paper presents a fully three-dimensional coupled simulation of flame propagation through epoxy resins reinforced with glass fiber (glass–epoxy) under the action of a heat flux from two sides, using the Fire Dynamic Simulator package. The model includes three-dimensional heat and mass transfer, diffusion of basic substances in the gas phase, and diffusion transport of pyrolysis products in the solid phase. The pyrolysis and oxidation processes are represented by macroreactions and take into account the effect of the phosphorus-containing flame retardant DDM-DOPO. The model satisfactorily predicts the experimentally observed dynamics of flame propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. A. A. Shaklein, S. A. Trubachev, G. Morar, N. A. Balobanov, and E. A. Mitryukova, Chem. Phys. Mesosc. 24 (3), 319 (2022). https://doi.org/10.15350/17270529.2022.3.26

    Article  CAS  Google Scholar 

  2. E. V. Bachtiar, K. Kurkowiak, L. Yan, B. Kasal, and T. Kolb, Polymers 11, 699 (2019) https://doi.org/10.3390/polym11040699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. U. Berardi, B. J. Meacham, N. A. Dembsey, and Y. G. You, Fire Technol. 50, 1607 (2014). https://doi.org/10.1007/s10694-014-0403-8

    Article  Google Scholar 

  4. S. Eibl, Fire Mater. 41, 808 (2017). https://doi.org/10.1002/fam.2423

    Article  CAS  Google Scholar 

  5. B. Perret, B. Schartel, K. Stöß, M. Ciesielski, J. Diederichs, M. Döring, J. Krämer, and V. Altstädt, Eur. Polym. J. 47, 1081 (2011). https://doi.org/10.1016/j.eurpolymj.2011.02.008

    Article  CAS  Google Scholar 

  6. O. P. Korobeinichev, A. A. Shaklein, S. A. Trubachev, A. I. Karpov, A. A. Paletsky, A. A. Chernov, E. Sosnin, and A. G. Shmakov, Polymers 14, 3379 (2022). https://doi.org/10.3390/polym14163379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Di Blasi, Progr. Energy Combust. Sci. 19, 71 (1993). https://doi.org/10.1016/0360-1285(93)90022-7

    Article  CAS  Google Scholar 

  8. M. W. Beckstead, Combust. Explos. Shock Waves, 42, 623 (2006). https://doi.org/10.1007/s10573-006-0096-5

    Article  ADS  Google Scholar 

  9. I. S. Wichman, Progr. Energy Combust. Sci. 18, 553 (1992). https://doi.org/10.1016/0360-1285(92)90039-4

    Article  CAS  Google Scholar 

  10. O. Korobeinichev, R. Glaznev, A. Karpov, A. Shaklein, A. Shmakov, A. Paletsky, S. Trubachev, Y. Hu, X. Wang, and W. Hu, Fire Saf. J. 111, 102924 (2020). https://doi.org/10.1016/j.firesaf.2019.102924

    Article  CAS  Google Scholar 

  11. S. A. Trubachev, O. P. Korobeinichev, A. I. Karpov, A. A. Shaklein, R. K. Glaznev, M. Gonchikzhapov, A. A. Paletsky, A. G. Tereshchenko, A. G. Shmakov, A. Bespalova, Y. Hu, X. Wang, and W. Hu, Proc. Combust. Inst. 38, 4635 (2021). https://doi.org/10.1016/j.proci.2020.05.043

    Article  CAS  Google Scholar 

  12. G. Avinash, A. Kumar, and V. Raghavan, Combust. Flame 165, 321 (2016). https://doi.org/10.1016/j.combustflame.2015.12.015

    Article  ADS  CAS  Google Scholar 

  13. S. Bhattacharjee, M. D. King, and C. Paolini, Combust. Theory Modell. 8, 23 (2004). https://doi.org/10.1088/1364-7830/8/1/002

    Article  ADS  CAS  Google Scholar 

  14. T. H. Lin and C. H. Chen, Combust. Sci. Technol. 141, 83 (1999). https://doi.org/10.1080/00102209908924183

    Article  CAS  Google Scholar 

  15. F. C. Duh and C. H. Chen, Wärme-Stoffübertragung, 28, 81 (1993). https://doi.org/10.1007/bf01579625

  16. K. R. Sacksteder, J. S. Tien, and J. S. Buoyant, Symp. (Int.) Combust. (Proc.) 25, 1685 (1994). https://doi.org/10.1016/s0082-0784(06)80816-7

  17. C. Kumar and A. Kumar, Combust. Theory Modell. 16, 537 (2012). https://doi.org/10.1080/13647830.2011.642003

    Article  ADS  CAS  Google Scholar 

  18. A. Snegirev, E. Kuznetsov, O. Korobeinichev, A. Shmakov, A. Paletsky, V. Shvartsberg, and S. Trubachev, Polymers 14, 4136 (2022). https://doi.org/10.3390/polym14194136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O. P. Korobeinichev, A. I. Karpov, A. A. Shaklein, A. A. Paletsky, A. A. Chernov, S. A. Trubachev, R. K. Glaznev, A. G. Shmakov, and S. L. Barbotko, Polymers 14, 911 (2022). https://doi.org/10.3390/polym14050911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O. P. Korobeinichev E. A. Sosnin, A. A. Shaklein, A. I. Karpov, A. R. Sagitov, S. A. Trubachev A. G. Shmakov, A. A. Paletsky, and I. V. Kulikov, Molecules 28, 5162 (2023). https://doi.org/10.3390/molecules28135162

    Article  CAS  Google Scholar 

  21. S. A. Trubachev, O. P. Korobeinichev, A. G. Shmakov, and A. R. Sagitov, Phys. Combust. Explos. 59 (2023). https://doi.org/10.15372/FGV2022.9289

  22. K. B. McGrattan, G. P. Forney, J. Floyd, and S. Hostikka, Fire Dynamics Simulator (version 2)—User’s Guide (National Institute of Standards and Technology, 2001). https://doi.org/10.6028/NIST.IR.6784

  23. O. P. Korobeinichev, S. M. Kumaran, D. Shanmugasundaram, V. Raghavan, S. A. Trubachev, A. A. Paletsky, A. G. Shmakov, R. K. Glaznev, A. A. Chernov, and A. G. Tereshchenko, Fire Technol. 58, 1227 (2022). https://doi.org/10.1007/s10694-021-01190-2

    Article  Google Scholar 

  24. J. Lee, B. Kim, S. Lee, and W. G. Shin, Fire Saf. J. 141, 103892 (2023). https://doi.org/10.1016/j.firesaf.2023.103892

    Article  Google Scholar 

  25. H. R. Rakesh Ranga, O. P. Korobeinichev, A. Harish, V. Raghavan, A. Kumar, I. E. Gerasimov, M. B. Gonchikzhapov, A. G. Tereshchenko, S. A. Trubachev, and A. G. Shmakov, Appl. Therm. Eng. 130, 477 (2028). https://doi.org/10.1016/j.applthermaleng.2017.11.041

  26. O. P. Korobeinichev, A. A. Paletsky, M. B. Gonchikzhapov, R. K. Glaznev, I. E. Gerasimov, Y. K. Naganovsky, I. K. Shundrina, A. Yu. Snegirev, and R. Vinu, Thermochim. Acta, 671, 17 (2019). https://doi.org/10.1016/j.tca.2018.10.019

    Article  CAS  Google Scholar 

  27. K. B. McGrattan, Fire Dynamics Simulator (Version 4): Technical Reference Guide (National Institute of Standards and Technology Special Publication, 2006). https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=861306

  28. C. Ma, D. Sánchez-Rodríguez, and T. Kamo, J. Hazard. Mater. 412, 125329 (2021). https://doi.org/10.1016/j.jhazmat.2021.125329

    Article  CAS  PubMed  Google Scholar 

  29. W. L. Grosshandler, RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment (National Institute of Standards and Technology, 1993). http://archive.org/details/radcalnarrowband1402gros

  30. S. Bhattacharjee, A. Simsek, F. Miller, S. Olson, and P. Ferkul, Proc. Combust. Inst. 36, 2963 (2017). https://doi.org/10.1016/j.proci.2016.06.025

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-19-00295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Trubachev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubachev, S.A., Korobeinichev, O.P., Shaklein, A.A. et al. Fully Three-Dimensional Coupled Simulation of Flame Propagation through a Polymer under the Action of a Heat Flux. Tech. Phys. Lett. 49, 179–189 (2023). https://doi.org/10.1134/S1063785024700172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785024700172

Keywords:

Navigation