Skip to main content
Log in

Impact of Transverse Optical Confinement on Performance of 1.55 μm Vertical-Cavity Surface-Emitting Lasers with a Buried Tunnel Junction

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract—The impact of transverse optical confinement on the static and spectral characteristics of 1.55 μm vertical-cavity surface-emitting lasers (WF-VCSEL) with a buried tunnel junction (BTJ) n++-InGaAs/p++-InGaAs/p++-InAlGaAs, implemented using molecular-beam epitaxy and wafer fusion. It was found that for VCSELs with a tunnel junction (TJ) etching depth of 15 nm, the single-mode lasing occurs up to 8 μm BTJ mesa size due to a relatively weak lateral optical confinement, while the effect of a saturable absorber (SA) appears when the BTJ mesa size is less than 7 μm. Enhancing lateral optical confinement by increasing the BTJ etching depth up to 20 nm leads to suppression of the SA effect at the BTJ mesa size of 5–6 μm, but simultaneously limits the maximum single-mode optical power. According to obtained results an increase in the spectral mismatch between the maximum of the gain spectrum of the active region and the resonance wavelength of the WF-VCSEL up to ~35–50 nm will make it possible to suppress the undesirable SA effect in a wide range of the BTJ mesa sizes maintaining the single-mode lasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, E. Kapon, Opt. Express, 19 (18), 16996 (2011). https://doi.org/10.1364/OE.19.016996

    Article  CAS  PubMed  ADS  Google Scholar 

  2. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon, IEEE J. Sel. Top. Quant. Electron., 21 (6), 414 (2015). https://doi.org/10.1109/jstqe.2015.2412495

    Article  ADS  Google Scholar 

  3. A. V. Babichev, L. Ya. Karachinsky, I. I. Novikov, A. G. Gladyshev, S. A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J. P. Turkiewicz, K. O. Voropaev, A. S. Ionov, M. Agustin, N. N. Ledentsov, A. Yu. Egorov, IEEE J. Sel. Top. Quant. Electron., 53 (6), 2400808 (2017). https://doi.org/10.1109/JQE.2017.2752700

    Article  Google Scholar 

  4. C. Lauer, M. Ortsiefer, R. Shau, J. Rosskopf, G. Bohm, R. Meyer, M. C. Amann, Phys. Status Solidi C, 1 (8), 2183 (2004). https://doi.org/10.1002/pssc.200404770

    Article  CAS  ADS  Google Scholar 

  5. M. Müller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Böhm, D. Bimberg, M.-C. Amann, IEEE J. Sel. Top. Quant. Electron., 17 (5), 1158 (2011). https://doi.org/10.1109/JSTQE.2011.2109700

    Article  CAS  ADS  Google Scholar 

  6. T. Grundl, P. Debernardi, M. Muller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, M.-C. Amann, IEEE J. Sel. Top. Quant. Electron., 19 (4), 1700913 (2013). https://doi.org/10.1109/JSTQE.2013.2244572

    Article  CAS  ADS  Google Scholar 

  7. M. Ortsiefer, R. Shau, G. Bohm, F. Kohler, M.C. Amann, Appl. Phys. Lett., 76 (16), 2179 (2000). https://doi.org/10.1049/el:20020819

    Article  CAS  ADS  Google Scholar 

  8. D. Keiper, R. Westphalen, G. Landgren, J. Cryst. Growth, 197 (1–2), 25 (1999). https://doi.org/10.1016/S0022-0248(98)00903-8

  9. N. Volet, T. Czyszanowski, J. Walczak, L. Mutter, B. Dwir, Z. Micković, P. Gallo, A. Caliman, A. Sirbu, A. Mereuta, V. Iakovlev, E. Kapon, Opt. Express, 21 (22), 26983 (2013). https://doi.org/10.1364/OE.21.026983

    Article  CAS  PubMed  ADS  Google Scholar 

  10. S. A. Blokhin, M. A. Bobrov, N. A. Maleev, A. A. Blokhin, A. G. Kuz’menkov, A. P. Vasil’ev, S. S. Rochas, A. G. Gladyshev, A. V. Babichev, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, V. M. Ustinov, Tech. Phys. Lett., 46 (9), 854 (2020). https://doi.org/10.1134/S1063785020090023

    Article  CAS  ADS  Google Scholar 

  11. S. A. Blokhin, A. V. Babichev, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, A. A. Blokhin, S. S. Rochas, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, Electron. Lett. (First published: 3 June 2021). https://doi.org/10.1049/ell2.12232

  12. S. A. Blokhin, V. N. Nevedomsky, M. A. Bobrov, N. A. Maleev, A. A. Blokhin, A. G. Kuzmenkov, A. P. Vasyl’ev, S. S. Rohas, A. V. Babichev, A. G. Gladyshev, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, V. M. Ustinov, Semiconductors, 54 (10), 1276 (2020). [S. A. Blokhin, S. N. Nevedomsky, M. A. Bobrov, N. A. Maleev, A. A. Blokhin, A. G. Kuzmenkov, A. P. Vasyl’ev, S. S. Rohas, A. V. Babichev, A. G. Gladyshev, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, V. M. Ustinov, Semiconductors, 54 (10), 1276 (2020). DOI 10.1134/S1063782620100048]https://doi.org/10.21883/FTP.2020.10.49947.9463

    Article  CAS  ADS  Google Scholar 

  13. K. O. Voropaev, B. I. Seleznev, A. Yu. Prokhorov, A. S. Ionov, S. A. Blokhin, J. Phys.: Conf. Ser., 1658, 12069 (2020). https://doi.org/10.1088/1742-6596/1658/1/012069

    Article  CAS  Google Scholar 

  14. G. R. Hadley, Opt. Lett., 20 (13), 1483 (1995). https://doi.org/10.1364/OL.20.001483

    Article  CAS  PubMed  ADS  Google Scholar 

  15. G. P. Agrawal, Fiber-optic communication systems (Wiley, N.Y., 2010).

    Book  Google Scholar 

  16. R. Michalzik, VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers (Springer-Verlag, Berlin, 2013). https://doi.org/10.1007/978-3-642-24986-0

    Book  Google Scholar 

  17. D. G. Deppe, J. Leshin, J. Leshin, L. Eifert, F. Tucker, T. Hillyer, Electron. Lett., 53 (24), 1598 (2017). https://doi.org/10.1049/el.2017.2780

    Article  CAS  ADS  Google Scholar 

  18. S. A. Blokhin, M. A. Bobrov, A. A. Blokhin, A. P. Vasil’ev, A. G. Kuz’menkov, N. A. Maleev, S. S. Rochas, A. G. Gladyshev, A. V. Babichev, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, K. O. Voropaev, A. S. Ionov, A. Yu. Egorov, V. M. Ustinov, Tech. Phys. Lett., 46 (12), 1257 (2020). https://doi.org/10.1134/S1063785020120172

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Blokhin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, S.A., Bobrov, M.A., Blokhin, A.A. et al. Impact of Transverse Optical Confinement on Performance of 1.55 μm Vertical-Cavity Surface-Emitting Lasers with a Buried Tunnel Junction. Tech. Phys. Lett. 49 (Suppl 3), S178–S183 (2023). https://doi.org/10.1134/S1063785023900674

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785023900674

Navigation