Skip to main content
Log in

The Effect of AlN Buffer Layer Morphology on the Structural Quality of a Semipolar GaN Layer Grown on a Si(001) Substrate, According to Transmission Electron Microscopy Data

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Structural features of the interface between a semipolar gallium nitride layer and buffer layer of aluminum nitride grown on a SiC/Si(001) template misoriented by an angle of 7° were studied by high-resolution transmission electron microscopy. The effect of interface morphology on the structural quality of the gallium nitride layer was revealed: faceted structure of the buffer layer surface reduces the threading dislocations density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. http://www.matprop.ru/InN_dvdv

  2. R. R. Reeber, K. Wang, MRS Online Proc. Library, 622, 6351 (2000). https://doi.org/10.1557/PROC-622-T6.35.1

    Article  Google Scholar 

  3. L. Liu, J. H. Edgar, Mater. Sci. Eng. R, 37, 61 (2002). https://doi.org/10.1016/S0927-796X(02)00008-6

    Article  Google Scholar 

  4. F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B, 56, R10024 (1997). https://doi.org/10.1103/PhysRevB.56.R10024

    Article  ADS  CAS  Google Scholar 

  5. F. Bernardini, V. Fiorentini, Phys. Rev. B, 57, R9427 (1998). https://doi.org/10.1103/PhysRevB.57.R9427

    Article  ADS  CAS  Google Scholar 

  6. A. E. Romanov, T. J. Baker, S. Nakamura, J. S. Speck, J. Appl. Phys., 100, 023522 (2006). https://doi.org/10.1063/1.2218385

    Article  ADS  CAS  Google Scholar 

  7. X. Zhao, K. Huang, J. Bruckbauer, S. Shen, C. Zhu, P. Fletcher, P. Feng, Y. Cai, J. Bai, C. Trager-Cowan, R. W. Martin, T. Wang, Sci. Rep., 10, 12650 (2020). https://doi.org/10.1038/s41598-020-69609-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Mantach, P. Vennegues, J. Zuniga Perez, P. De Mierry, M. Leroux, M. Portail, G. Feuillet, J. Appl. Phys., 125, 035703 (2019). https://doi.org/10.1063/1.5067375

    Article  ADS  CAS  Google Scholar 

  9. I. Kim, J. Holmi, R. Raju, A. Haapalinna, S. Suihkonen, J. Phys. Commun., 4, 045010 (2020). https://doi.org/10.1088/2399-6528/ab885c

    Article  CAS  Google Scholar 

  10. S. A. Kukushkin, A. V. Osipov, J. Phys. D.: Appl. Phys., 47, 313001 (2014). https://doi.org/10.1088/0022-3727/47/31/313001

    Article  ADS  CAS  Google Scholar 

  11. V. Bessolov, A. Kalmykov, E. Konenkova, S. Kukushkin, A. Myasoedov, N. Poletaev, S. Rodin, J. Cryst. Growth, 457, 202 (2017). https://doi.org/10.1016/j.jcrysgro.2016.05.025

    Article  ADS  CAS  Google Scholar 

  12. L. K. Orlov, Yu. N. Drozdov, V. B. Shevtsov, V. A. Bozhenkin, V. I. Vdovin, Phys. Solid State, 49 (4), 627 (2007). https://doi.org/10.1134/S1063783407040051

    Article  ADS  CAS  Google Scholar 

  13. L. K. Orlov, Yu. N. Drozdov, N. A. Alyabina, N. L. Ivin-a, V. I. Vdovin, I. N. Dmitruk, Phys. Solid State, 51 (3), 474 (2009). .https://doi.org/10.1134/S1063783409030056

    Article  ADS  CAS  Google Scholar 

  14. F. Glas, Phys. Rev. B, 74, 121302 (2006). https://doi.org/10.1103/PhysRevB.74.121302

    Article  ADS  CAS  Google Scholar 

  15. H. Nagai, J. Appl. Phys., 45, 3789 (1974). https://doi.org/10.1063/1.1663861

    Article  ADS  CAS  Google Scholar 

  16. X. R. Huang, J. Bai, M. Dudley, R. D. Dupuis, U. Chowdhury, Appl. Phys. Lett., 86, 211916 (2005). https://doi.org/10.1063/1.1940123

    Article  ADS  CAS  Google Scholar 

  17. A. E. Kalmykov, A. V. Myasoedov, L. M. Sorokin, Tech. Phys. Lett., 44 (10), 926 (2018). .https://doi.org/10.1134/S1063785018100267

    Article  ADS  CAS  Google Scholar 

  18. M. Khoury, H. Li, H. Zhang, B. Bonef, M. S. Wong, F. Wu, D. Cohen, P. De Mierry, P. Vennegues, J. S. Speck, S. Nakamura, S. P. DenBaars, ACS Appl. Mater. Interfaces, 11, 47106 (2019). https://doi.org/10.1021/acsami.9b17525

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Investigations by transmission electron microscopy were performed at the equipment of Federal Common Use Center “Material science and diagnostics in advanced technologies” and NBICS center of NRC “Kurchatov Institute.”

The authors are grateful to V.N. Bessolov for providing the samples.

Funding

Investigation of AlN layers structural properties was supported by the Russian Fundamental Research Foundation (project no. 19-29-12041 mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Kalmykov.

Ethics declarations

The authors of this work declare that they have no conflict of interests.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirilenko, D.A., Myasoedov, A.V., Kalmykov, A.E. et al. The Effect of AlN Buffer Layer Morphology on the Structural Quality of a Semipolar GaN Layer Grown on a Si(001) Substrate, According to Transmission Electron Microscopy Data. Tech. Phys. Lett. 49 (Suppl 1), S34–S37 (2023). https://doi.org/10.1134/S1063785023900303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785023900303

Keywords:

Navigation