Skip to main content
Log in

Collapsing Gunn Domains as a Mechanism of Self-Supporting Conducting State in Reversely Biased High-Voltage GaAs Diodes

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Switching of a high-voltage GaAs diode to the conducting state in the delayed impact-ionization mode is simulated and the results are compared with experimental data. It is shown that the effect of long-term (up to 100 ns) sustaining of the conducting state of the diode after switching is due to the appearance of narrow (of the order of a micrometer) ionizing Gunn domains, the so-called collapsing domains, in the electron-hole plasma. Impact ionization in collapsing domains and in the edge (cathode and anode) domains of a strong electric field (~300 kV/cm) maintains a high concentration of nonequilibrium carriers (≥1017 cm–3) during the entire duration of the applied reverse polarity voltage pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. High-power optically activated solid-state switches, Ed. by A. Rosen, F. Zutavern (Artech House, Boston—London, 1994).

    Google Scholar 

  2. S. S. Khludkov, O. P. Tolbanov, M. D. Vilisova, I. A. Prudaev, Poluprovodnikovye pribory na osnove arsenida galliya s glubokimi primesnymi tsentrami (Izd. Dom Tomsk. Gos. Univ., Tomsk, 2016) (in Russian).

    Google Scholar 

  3. A. V. Rozhkov, M. S. Ivanov, P. B. Rodin, Pis’ma Zh. Tekh. Fiz., 48 (16), 25 (2022) (in Russian). https://doi.org/10.21883/PJTF.2022.16.53203.19271

  4. S. N. Vainshtein, V. S. Yuferev, J. T. Kostamovaara, J. Appl. Phys., 97 (2), 024502 (2005). https://doi.org/10.1063/1.1839638

    Article  CAS  ADS  Google Scholar 

  5. S. Selberherr, Analysis and simulation of semiconductor devices (Springer-Verlag, Wien—N.Y., 1984).

    Book  Google Scholar 

  6. S. N. Vainshtein, V. S. Yuferev, J. T. Kostamovaara, M. M. Kulagina, H. T. Moilanen, IEEE Trans. Electron Dev., 57 (4), 733 (2010). https://doi.org/10.1109/TED.2010.2041281

    Article  CAS  ADS  Google Scholar 

  7. M. S. Ivanov, V. I. Brylevskiy, I. V. Smirnova, P. B. Rodin, J. Appl. Phys., 131 (1), 014502 (2022). https://doi.org/10.1063/5.0077092

    Article  CAS  ADS  Google Scholar 

  8. M. S. Ivanov, V. I. Brylevskiy, P. B. Rodin, Tech. Phys. Lett., 47, 661 (2021). .https://doi.org/10.1134/S1063785021070087

    Article  CAS  ADS  Google Scholar 

  9. H. Benda, E. Spenke, Proc. IEEE, 55 (8), 1331 (1967). https://doi.org/10.1109/PROC.1967.5834

    Article  Google Scholar 

  10. L. Hu, J. Su, Z. Ding, Q. Hao, X. Yuan, J. Appl. Phys., 115 (9), 094503 (2014). https://doi.org/10.1063/1.4866715

    Article  CAS  ADS  Google Scholar 

  11. I. A. Prudaev, M. G. Verkholetov, A. D. Koroleva, O. P. Tolbanov, Tech. Phys. Lett., 44, 465 (2018). https://doi.org/10.1134/S106378501806007X

    Article  CAS  ADS  Google Scholar 

  12. I. A. Prudaev, V. L. Oleinik, T. E. Smirnova, V. V. Kopyev, M. G. Verkholetov, E. V. Balzovsky, O. P. Tolbanov, IEEE Trans. Electron Dev., 65 (8), 3339 (2018). https://doi.org/10.1109/TED.2018.2845543

    Article  CAS  ADS  Google Scholar 

  13. I. A. Prudaev, S. N. Vainshtein, M. G. Verkholetov, V. L. Oleinik, V. V. Kopyev, IEEE Trans. Electron Dev., 68 (1), 57 (2021). https://doi.org/10.1109/TED.2020.3039213

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ivanov.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.S., Rozhkov, A.V. & Rodin, P.B. Collapsing Gunn Domains as a Mechanism of Self-Supporting Conducting State in Reversely Biased High-Voltage GaAs Diodes. Tech. Phys. Lett. 49 (Suppl 1), S22–S25 (2023). https://doi.org/10.1134/S1063785023900273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785023900273

Keywords:

Navigation