Skip to main content
Log in

Modeling of Transformations during the Formation of Local Waves of SARS-CoV-2 Spreading at the Endemic Stage of the Pandemic

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Most of the predictions made by the author at the end of 2022 about the development of scenarios for the coronavirus epidemic at the beginning of 2024 have been confirmed. There is a fungible set of changing SARS-CoV-2 strains, among which there is no longer a leader. In Asian countries, in December 2023, regional outbreaks of morbidity due to strains from a new branch of Omicron, BA.2.86, began, just like a year ago, although, in the summer between waves, the incidence of COVID-19 was low. The predicted nonlocal COVID outbreak is a positive feedback loop: the more infections, the higher the likelihood of further mutations in the virus and the greater chances of strains evading antibodies. It has been confirmed by a number of studies that repeated COVID often causes long-term and severe immunosuppression. The factor of post-COVID immunodeficiency and T-cell depletion in susceptible groups maintains a reservoir for the accumulation of SARS-CoV-2 mutations. This specific phenomenon was not taken into account in model predictions a year ago. The concept of the SIRS model is not applicable to SARS-CoV-2. Omicron’s many branches make it difficult to create a new vaccine. Antigenic drift makes it possible to bypass vaccine immunity, but global outbreaks are not observed for a long time due to the persistence of cytotoxic CD8+ T cells in us. From a dynamic point of view, the COVID-19 pandemic is divided into clusters of regional epidemics and demonstrates oscillatory dynamics. The oscillations have changed their character, with the wave crests becoming longer, although smaller in amplitude. Epidemic waves do not develop so rapidly, but grow gradually; however, this only increases the final number of cases. The damped amplitude of the waves of infection that formed after the initial outbreak again turns into an extreme peak. This may be due to effects after crisis events: mass infections or an increase in virulence of a new strain that evades the antibodies of vaccine immunity, but is destroyable. The two situations are different. We classified the observed local epidemic scenarios of COVID waves according to the types of oscillations from a physical point of view. COVID waves are no longer classic decaying relaxation oscillations. Using simulation modeling, we analyzed variants of epidemic dynamics with sharp changes. Special epidemic scenarios of the sudden occurrence of a short wave as a probable development of the current situation in 2024 were studied on the basis of nonlinear equations with a deviating argument. The COVID wave of the JN.1 strain in winter 2024 is the second fastest growing in cases of severe disease after the Omicron BA.1 wave in spring 2022 and will inevitably lead to a new impulse round in the evolution of the coronavirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Y. Perevaryukha, Tech. Phys. Lett. 49, 43 (2023). https://doi.org/10.1134/S106378502303001X

    Article  ADS  CAS  Google Scholar 

  2. A. Y. Perevaryukha, Tech. Phys. Lett. 49 1 (2023). https://doi.org/10.1134/S1063785023010042

    Article  ADS  CAS  Google Scholar 

  3. A. Y. Perevaryukha, Tech. Phys. 68, 8 (2023). https://doi.org/10.1134/S1063784223010048

    Article  CAS  Google Scholar 

  4. J. P. A. Ioannidis, S. Cripps, and M. Tanner, Int. J. Forecast., No. 2, 423 (2022).

  5. V. Chin, N. Samia, and R. Marchant, Eur. J. Epidemiol. 35, 733 (2020). doi.org/https://doi.org/10.1007/s10654-020-00669-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Z. Chen and J. Wherry, Nat. Rev. Immunol. 20, 529 (2020). https://doi.org/10.1038/s41577-020-0402-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Diao, C. Wang, and Y. Tan, Front. Immunol. 11, 827 (2020). https://doi.org/10.3389/fimmu.2020.00827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Moein, N. Nickaeen, and A. Roointan, Sci.Rep. 11, 4725 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. V. Nikitina, Comput. Mathem. Inform. Technol. 1 (1), 35 (2019).

    Google Scholar 

  10. A. Y. Perevaryukha, Biophys. 61 (2), 334 (2016).

    Article  CAS  Google Scholar 

  11. V. V. Mikhailov, A. V. Spesivtsev, and A. Y. Perevaryukha, in Studies in Computational Intelligence (Springer Nature Switzerland, Cham, 2020), Vol. 868, p. 449. https://doi.org/10.1007/978-3-030-32258-8

  12. T. Yu. Borisova, Tech. Phys. Lett. 48, 251 (2022). https://doi.org/10.1134/S1063785022090012

    Article  ADS  CAS  Google Scholar 

  13. A. Yu. Perevaryukha, Biophys. 66 (2), 327 (2021). https://doi.org/10.1134/S0006350921020160

    Article  CAS  Google Scholar 

  14. G. E. Hutchinson, Ann. N. Y. Acad. Sci. 50 (4), 221 (1948).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. A. Yu. Kolesov and Yu. S. Kolesov, Relaxation Oscillations and Mathematical Models of Ecology, Tr. Mat. Inst. Steklova (Nauka, Moscow, 1993) [in Russian].

  16. A. Yu. Trofimova, A. Yu. Perevaryukha, and A. B. Manvelova, Tech. Phys. Lett. 48, 305 (2022). https://doi.org/10.1134/S1063785022110025

    Article  ADS  CAS  Google Scholar 

  17. V. V. Mikhailov, A. Yu. Perevaryukha, and I. V. Trofimova, Tech. Phys. Lett. 48, 301 (2022). https://doi.org/10.1134/S1063785022110013

    Article  ADS  CAS  Google Scholar 

  18. A. Yu. Perevaryukha, Tech. Phys. 67, 523 (2022). https://doi.org/10.1134/S1063784222070088

    Article  CAS  Google Scholar 

  19. N. Fabiano and S. N. Radenovic, Mil. Tech. Cour. 69 (1), 1 (2021).

    Google Scholar 

  20. A. V. Shabunin, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 30 (6), 717 (2022)

    Google Scholar 

  21. M. S. Abotaleb and T. A. Makarovskikh, Bull. South Ural State Univ. 21 (3), 26 (2021).

    Google Scholar 

  22. A. V. Zaikovskaya, A. V. Gladysheva, and M. Yu. Kartashov, Probl. Osobo Opasnykh Infects., No. 1, 94 (2022).

  23. V. I. Vechorko, O. V. Averkov, and A. A. Zimin, Cardiovasc. Ther. Prev. 21 (6), 89 (2022).

    Google Scholar 

  24. S. J. Silva, K. Pardee, L. Pena, and A. Kohl, Rev. Med. Virol. 33, e2373 (2022).

    Article  PubMed  Google Scholar 

  25. I. R. Skripka, Sci. Anal. Herald Inst. Eur. Akad. Nauk, No. 1, 118 (2021).

    Google Scholar 

  26. N. Brusselaers, D. Steadson, and K. Bjorklund, Humanit. Soc. Sci. Commun. 9, 91 (2022). https://doi.org/10.1057/s41599-022-01097-5

    Article  Google Scholar 

  27. C. Phetsouphanh, D. R. Darley, and D. B. Wilson, Nat. Immunol. 210 (2022). https://doi.org/10.1038/s41590-021-01113-x

  28. H. Oshitani, Nature 605, 589 (2022). https://doi.org/10.1038/d41586-022-01385-9

    Article  ADS  CAS  PubMed  Google Scholar 

  29. L. Corey, C. Beyrer, M. Cohen, N. Michael, T. Bedford, and M. Rolland, N. Engl. J. Med. 385, 562 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. P. V. Markov, M. Ghafari, and M. Beer, Nat. Rev. Microbiol. 21, 195 (2023).

    Article  Google Scholar 

Download references

Funding

This work was performed as part of the project “Theoretical and Technological Foundations of Digital Transformations of Society and Economy of Russia” of the St. Petersburg Federal Research Center, Russian Academy of Sciences, grant no. FFZF-2022-0003 (supervised by R.M. Yusupov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Perevaryukha.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevaryukha, A.Y. Modeling of Transformations during the Formation of Local Waves of SARS-CoV-2 Spreading at the Endemic Stage of the Pandemic. Tech. Phys. Lett. 49, 165–174 (2023). https://doi.org/10.1134/S1063785023700153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785023700153

Keywords:

Navigation