Skip to main content
Log in

Hydrothermal Synthesis of High-Efficiency Carbon Sorbent Based on Renewable Resources

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A technique of synthesis of new sorption materials by hydrothermal carbonization of sunflower meal (HTS) with the addition of graphene oxide (GO) and subsequent carbonization (C) has been developed. To assess morphological and phase changes during carbonization, the materials have been characterized by scanning electron microscopy and IR spectroscopy. According to the results obtained, carbonization facilitates the development of latent porosity and reduces the amount of oxygen-containing and alkyl groups. Kinetic sorption studies have also been carried out by the example of extraction of Pb2+ ions and organic dye molecules (methylene blue (MB)). The experimental results show that the adsorption capacities of the HTS, HTS/C, HTS/GO, and HTS/GO/C composites were 82.9, 108.6, 168.9, and 148.3 mg/g, respectively, for extraction of Pb2+ ions and 1481.8, 1601.1, 1920.3, and 2283 mg/g, respectively, for extraction of MB molecules. It is established that, during the absorption of MB molecules, carbonization affects significantly the contact time. Carbonized samples exhibit high sorption activity, which results in the equilibrium contact time of 15 min (this value is 60 min for noncarbonized samples). The equilibrium time during the adsorption of Pb2+ ions is 60 min for all samples. The adsorption kinetics is described using the following models: the pseudo-first-order model, pseudo-second-order model, Elovich model, and intraparticle diffusion model. It is found that the adsorption process is limited by the chemical-exchange reaction and runs in a mixed-diffusion mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. S. Mkrtchyan, O. A. Anan’eva, I. V. Burakova, A. E. Burakov, and A. G. Tkachev, Adv. Mater. Technol. 7, 228 (2022). https://doi.org/10.17277/jamt.2022.03.pp.228-237

    Article  Google Scholar 

  2. E. S. Mkrtchyan, I. V. Burakova, A. E. Burakov, O. A. Anan’eva, T. P. D’yachkova, and A. G. Tkachev, Zhidk. Krist. Prakt. Ispol’z. 22 (3), 38 (2022). https://doi.org/10.18083/LCAppl.2022.3.38

    Article  CAS  Google Scholar 

  3. H. Khurshid, M. R. U. Mustafa, and M. H. Isa, Environ. Res. 212, 113138 (2022). https://doi.org/10.1016/j.envres.2022.113138

    Article  CAS  PubMed  Google Scholar 

  4. M. Liu, E. Almatrafi, Y. Zhang, P. Xu, B. Song, C. Zhou, G. Zeng, and Y. Zhu, Sci. Total Environ. 806, 150531 (2022). https://doi.org/10.1016/j.scitotenv.2021.150531

    Article  ADS  CAS  PubMed  Google Scholar 

  5. P. S. Kumar, R. Gayathri, and B. S. Rathi, Chemosphere 285, 131438 (2021). https://doi.org/10.1016/j.chemosphere.2021.131438

    Article  CAS  PubMed  Google Scholar 

  6. T. A. Khan, A. S. Saud, S. S. Jamari, M. H. A. Rahim, J. W. Park, and H.-J. Kim, Biomass Bioenergy 130, 105384 (2019). https://doi.org/10.1016/j.biombioe.2019.105384

    Article  CAS  Google Scholar 

  7. Y. X. Seow, Y. H. Tan, N. M. Mubarak, J. Kansedo, M. Khalid, M. L. Ibrahim, and M. Ghasemi, Environ. Chem. Eng. 10, 107017 (2022). https://doi.org/10.1016/j.jece.2021.107017

    Article  CAS  Google Scholar 

  8. S. Yadav, A. Yadav, N. Bagotia, A. K. Sharma, and S. Kumar, Water Process Eng. 42, 102148 (2021). https://doi.org/10.1016/j.jwpe.2021.102148

    Article  Google Scholar 

  9. A. Ronix, O. Pezoti, L. S. Souza, I. P. A. F. Souza, K. C. Bedin, P. S. C. Souza, T. L. Silva, S. A. R. Melo, A. L. Cazetta, and V. C. Almeida, Environ. Chem. Eng. 5, 4841 (2017). https://doi.org/10.1016/j.jece.2017.08.035

    Article  CAS  Google Scholar 

  10. Z. Zhou, Z. Xu, Q. Feng, D. Yao, J. Yu, D. Wang, S. Lv, Y. Liu, N. Zhou, and M. Zhong, Cleaner Prod. 187, 996 (2018). https://doi.org/10.1016/j.jclepro.2018.03.268

    Article  CAS  Google Scholar 

  11. R. Negi, G. Satpathy, Y. K. Tyagi, and R. K. Gupta, Int. J. Environ. Pollut. 49, 179 (2012). https://doi.org/10.1504/IJEP.2012.050898

    Article  CAS  Google Scholar 

  12. M. Alam, R. Nadeem, and M. I. Jilani, Int. J. Chem. Biochem. Sci. 1, 24 (2012).

    Google Scholar 

  13. A. Elham, T. Hossein, and H. Mahnoosh, Appl. Sci. Environ. Manage. 14 (4) (2011). https://doi.org/10.4314/jasem.v14i4.63306

  14. S. Pap, V. Bezanovic, J. Radonic, A. Babic, S. Saric, D. Adamovic, and S. M. Turk, J. Mol. Liq. 268, 315 (2018). https://doi.org/10.1016/j.molliq.2018.07.072

    Article  CAS  Google Scholar 

  15. X. Ma, Y. Liu, Q. Zhang, S. Sun, X. Zhou, and Y. Xu, Cleaner Prod. 331, 129878 (2022). https://doi.org/10.1016/j.jclepro.2021.129878

    Article  CAS  Google Scholar 

  16. T. S. Hubetska, N. G. Kobylinska, and J. R. García, Anal. Appl. Pyrolys. 157, 105237 (2021). https://doi.org/10.1016/j.jaap.2021.105237

    Article  CAS  Google Scholar 

  17. D. Uygunoz, F. Demir, M. Y. Ozen, and E. M. Derun, Chem. Data Collect. 40, 100893 (2022). https://doi.org/10.1016/j.cdc.2022.100893

    Article  CAS  Google Scholar 

  18. I. Anastopoulos, J. O. Ighalo, C. Adaobi Igwegbe, D. A. Giannakoudakis, K. S. Triantafyllidis, I. Pashalidis, and D. Kalderis, J. Mol. Liq. 342, 117540 (2021). https://doi.org/10.1016/j.molliq.2021.117540

    Article  CAS  Google Scholar 

  19. M. E. Saleh, A. A. El-Refaey, and A. H. Mahmoud, Soil Water Res. 11, 53 (2016). https://doi.org/10.17221/274/2014-SWR

    Article  CAS  Google Scholar 

  20. S. Román, J. M. V. Nabais, C. Laginhas, B. Ledesma, and J. F. González, Fuel Process. Tech. 103, 78 (2012). https://doi.org/10.1016/j.fuproc.2011.11.009

    Article  CAS  Google Scholar 

  21. I. Pavkov, M. Radojčin, Z. Stamenković, S. Bikić, M. Tomić, M. Bukurov, and B. Despotović, Solid Fuel Chem. 56, 225 (2022). https://doi.org/10.3103/S0361521922030077

    Article  CAS  Google Scholar 

  22. S. K. Lagergren, Sven. Vetenskapsakad. Handingarl. 24, 1 (1898).

    Google Scholar 

  23. Y. S. Ho and G. McKay, Water Res. 33, 578 (1999). https://doi.org/10.1016/S0043-1354(98)00207-3

    Article  CAS  Google Scholar 

  24. I. S. Mclintock, Nature (London, U.K.) 216 (5121), 1204 (1967). https://doi.org/10.1038/2161204a0

    Article  ADS  CAS  Google Scholar 

  25. W. Weber and J. Morris, J. Sanit. Eng. Div. Am. Soc. Civil Eng. 89, 53 (1963).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using facilities of the Center for Collective Use “Production and Application of Multifunctional Nanomaterials” of Tambov State Technical University.

Funding

This study was supported by the Russian Science Foundation, grant no. 22-13-20074, https://rscf.ru/project/22-13-20074.

Author information

Authors and Affiliations

Authors

Contributions

A.E. Burakov: methodology of the study, editing the text of the article.

T.S. Kuznetsova: conducting experimental studies on the synthesis of hydrothermal carbon.

I.V. Burakova: development of the scientific work concept, writing the text of the article, preparation of illustrations.

O.A. Ananyeva: conducting adsorption experimental studies.

E.S. Mkrtchyan: conducting adsorption experimental studies.

T.P. Dyachkova: characterization of the nanocomposite and describing the results obtained.

A.G. Tkachev: consultation on planning, editing the text of the article.

Corresponding author

Correspondence to I. V. Burakova.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burakov, A.E., Kuznetsova, T.S., Burakova, I.V. et al. Hydrothermal Synthesis of High-Efficiency Carbon Sorbent Based on Renewable Resources. Tech. Phys. Lett. 49, 151–158 (2023). https://doi.org/10.1134/S106378502370013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378502370013X

Keywords:

Navigation