Skip to main content
Log in

Formation of Internal Stress Fields on a Rail Surface during Operation

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The level of microscopic internal long-range stress fields σlr on the tread surface and working fillet has been determined for two rails with a carbon content of 0.74 and 0.91 wt % of categories DT350 (of general purpose) and DT400IK (with increased wear resistance and contact endurance) after a passed tonnage of 1770 million t (for DT350), and 187 million t (for DT400IK) (1) and 234 million t (for DT400IK) (2). For this purpose, the bending extinction contours are analyzed by means of transmission electron diffraction microscopy, the parameters of which are used in calculating σi. The presence of excess extinction contours indicates the bending–torsion of the lattice, which is characterized by an excess density of dislocations. A comparison is made with other methods for measuring internal stress fields at the meso and macro levels (optical and magnetic methods, X-ray diffraction analysis), which are integral. It is shown that the parameters of the bending extinction contours are the most informative and allow one to control locality of the σlr measurement. Sources of internal stress fields in rail steels are noted. An increase in the level of σlr in D400IK rails in comparison with rails of the DT350 category has been revealed. The growth in the passed tonnage for rails of the DT400IK category leads to an increase in σlr, while the values of internal stresses on the fillet surface exceed the corresponding values on the tread surface. The physical reasons for the observed changes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. A. Yuriev, V. E. Gromov, Yu. F. Ivanov, Yu. A. Rubannikova, M. D. Starostenkov, and P. Y. Tabakov, Structure and Properties of Lengthy Rails after Extreme Long-Term Operation (Mater. Res. Forum, USA, 2021).

  2. Yu. F. Ivanov, V. E. Gromov, A. A. Yuriev, V. E. Kormyshev, Yu. A. Rubannikova, and A. P. Semin, J. Mater. Res. Technol. 11, 710 (2021).

    Article  CAS  Google Scholar 

  3. Y. F. Ivanov, A. M. Glezer, R. V. Sundeev, R. V. Kuznetsov, V. E. Gromov, Y. A. Shliarova, and A. P. Semin, Mater. Lett. 309, 131378 (2022).

    Article  CAS  Google Scholar 

  4. V. E. Gromov, Y. F. Ivanov, R. S. Qin, O. A. Peregudov, K. V. Aksenova, and O. A. Semina, Mater. Sci. Technol. 33, 1473 (2017).

    Article  CAS  ADS  Google Scholar 

  5. N. A. Koneva, E. V. Kozlov, and L. I. Trishkina, Mater. Sci. Eng. A 319–321, 156 (2001).

    Article  Google Scholar 

  6. M. Yang, Yu. Ral, F. Yuan, Yu. Zhu, and X. Wu Back, Mater. Res. Lett. 4, 1 (2016).

    Article  ADS  Google Scholar 

  7. H. Koneva, S. Kiseleva, and H. Popova, Evolution of Structure and Internal Stress Fields. Austenitic Steel (LAP LAMBERT Academic, Germany, 2017).

    Google Scholar 

  8. A. N. Smirnov, A. F. Knyaz’kov, V. L. Knyaz’kov, et al., Welding with Modulated Current. Structural-Phase State and Internal Stress Fields in Welded Joints of Structural Steels (Innov. Mashinostr., Sib. Izd. Gruppa, Moscow, Kemerovo, 2017) [in Russian].

    Google Scholar 

  9. A. N. Smirnov, A. F. Knyaz’kov, V. L. Knyaz’kov, et al., Structural-Phase State, Control and Testing of Welded Joints of Austenitic Stainless Steels, Ed. by A. N. Smirnov (Sib. Izd. Gruppa, Kemerovo, 2021) [in Russian].

    Google Scholar 

  10. E. V. Kozlov, N. A. Popova, O. V. Kabanina, S. I. Klimashin, and V. E. Gromov, Evolution of Phase Composition, Defect Structure, Internal Stresses and Redistribution of Carbon during Tempering of Cast Structural Steel (SibGIU, Novokuznetsk, 2007) [in Russian].

  11. V. P. Gagauz, E. V. Kozlov, V. I. Danilov, Yu. F. Ivanov, and V. E. Gromov, Structural-Phase States and Mechanical Properties of Thick Welds (SibGIU, Novokuznetsk, 2008) [in Russian].

  12. L. I. Trishkina, T. V. Cherkasova, N. A. Popova, N. A. Koneva, V. E. Gromov, and K. V. Aksenova, Dislocation Ensemble: Scalar Dislocation Density and Its Components (SibGIU, Novokuznetsk, 2019) [in Russian].

  13. N. A. Popova, Yu. F. Ivanov, V. E. Gromov, E. L. Nikonenko, Yu. V. Solov’eva, A. V. Nikonenko, and Yu. A. Shlyarova, Internal Stresses in Polycrystalline Metallic Materials (Poligrafist, Novokuznetsk, 2023) [in Russian].

    Google Scholar 

  14. J. Friedel, Dislocations (Pergamon, Oxford, 1964).

    Google Scholar 

  15. J. Hirth, J. Lothe, and T. Mura, Theory of Dislocations (McGraw-Hill, New York, 1972).

    Google Scholar 

  16. A. S. Kobayashi, Handbook on Experimental Mechanics (Prentice Hall, New Jersey, 1987), Vol. 1.

    Google Scholar 

  17. A. S. Kobayashi, Handbook on Experimental Mechanics (Prentice Hall, New Jersey, 1987), Vol. 2.

    Google Scholar 

  18. A. A. Rusakov, X-ray Diffraction Analysis of Metals (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  19. D. M. Vasil’ev, Diffraction Methods for Studying Structures (GTU, St. Petersburg, 1988) [in Russian].

    Google Scholar 

  20. F. R. Egerton, Physical Principles of Electron Microscopy (Springer Int., Basel, 2016).

    Book  Google Scholar 

  21. C. S. S. R. Kumar, Transmission Electron Microscopy (Springer, New York, 2014).

    Google Scholar 

  22. C. B. Carter and D. B. Williams, Transmission Electron Microscopy (Springer Int., Basel, 2016).

    Book  Google Scholar 

  23. V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  24. V. V. Rybin, Large Plastic Deformations and Destruction of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  25. E. V. Kozlov, V. V. Veter, N. A. Popova, and L. N. Ignatenko, Russ. Phys. J. 37, 762 (1994).

    Article  Google Scholar 

  26. N. A. Koneva and E. V. Kozlov, Russ. Phys. J. 25, 681 (1982).

    Google Scholar 

  27. E. V. Kozlov, V. V. Veter, N. A. Popova, et al., Russ. Phys. J. 37, 137 (1994).

    Article  Google Scholar 

  28. V. E. Gromov, E. V. Kozlov, V. I. Bazaikin, et al., Physics and Mechanics of Drawing and Die Forging (Nedra, Moscow, 1997) [in Russian].

    Google Scholar 

  29. B. N. Strunin, Sov. Phys. Solid State 9, 630 (1967).

    Google Scholar 

  30. A. A. Alekseev, E. V. Onishchenko, and B. N. Strunin, Sov. Phys. Solid State 11, 2144 (1969).

    Google Scholar 

  31. N. A. Koneva, Vopr. Materialoved. 29 (1), 103 (2002).

    Google Scholar 

  32. E. V. Kozlov and N. A. Koneva, Mater. Sci. Eng. A 234, 982 (1997).

    Article  Google Scholar 

Download references

Funding

The work was carried out within the framework of state order no. FEMN-2023-0003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Popova, V. E. Gromov, Yu. F. Ivanov, M. A. Porfiriev, E. L. Nikonenko, R. E. Kryukov or A. N. Gostevskaya.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, N.A., Gromov, V.E., Ivanov, Y.F. et al. Formation of Internal Stress Fields on a Rail Surface during Operation. Tech. Phys. Lett. 49, 117–122 (2023). https://doi.org/10.1134/S1063785023700116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785023700116

Keywords:

Navigation