Skip to main content
Log in

A Molecular Dynamics Study of the Influence of Elastic Strain on the Intensity of Mutual Diffusion at a Solid–Liquid Contact of Ni and Al

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The influence of uniaxial elastic strain of the Ni lattice on the intensity of mutual diffusion at a solid–liquid contact of Ni and Al has been studied by the molecular dynamics method. In all the cases under consideration, the intensity of diffusion has been found to increase and decrease upon extension and compression, respectively, which is related to a corresponding change in the free volume affecting to a great extent the diffusion mobility of atoms. It has been established that the intensity of mutual diffusion in the case of the (111) interface orientation relative to the Ni lattice is higher in comparison with the (001) orientation. This difference is explained by the different energies of Ni atoms in the aluminum phase and incorporated in the interface of crystalline nickel for both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. B. Miracle, Acta Metall. Mater. 41, 649 (1993).

    Article  CAS  Google Scholar 

  2. J. H. Westbrook and R. L. Fleischer, Intermetallic Compounds: Structural Applications (Wiley, New York, 2000), Vol. 3.

    Google Scholar 

  3. P. Tresa and T. Sammy, J. Propuls. Power 22, 361 (2006).

    Article  Google Scholar 

  4. M. S. F. Lima and P. I. Ferreira, Intermetallics 4, 85 (1996).

    Article  CAS  Google Scholar 

  5. A. S. Rogachev, N. F. Shkodich, S. G. Vadchenko, F. Baras, D. Yu. Kovalev, S. Rouvimov, A. A. Nepapushev, and A. S. Mukasyan, J. Alloys Compd. 577, 600 (2013).

    Article  CAS  Google Scholar 

  6. L. Celko, L. Klakurkova, and J. Svejcar, Def. Dif. Forum 297–301, 771 (2010).

  7. E. Sondermann, F. Kargl, and A. Meyer, Phys. Rev. B 93, 184201 (2016).

    Article  ADS  Google Scholar 

  8. G. M. Poletaev, J. Exp. Theor. Phys. 133, 455 (2021).

    Article  CAS  ADS  Google Scholar 

  9. G. M. Poletaev, Yu. V. Bebikhov, A. S. Semenov, and M. D. Starostenkov, Lett. Mater. 11, 438 (2021).

    Article  Google Scholar 

  10. V. V. Boldyrev and K. Tkacova, J. Mater. Synth. Process. 8, 121 (2000).

    Article  CAS  Google Scholar 

  11. V. Y. Filimonov, M. V. Loginova, S. G. Ivanov, A. A. Sitnikov, V. I. Yakovlev, A. V. Sobachkin, A. Z. Negodyaev, and A. Y. Myasnikov, Combust. Sci. Technol. 192, 457 (2020).

    Article  CAS  Google Scholar 

  12. G. P. Purja Pun and Y. Mishin, Philos. Mag. 89, 3245 (2009).

    Article  CAS  ADS  Google Scholar 

  13. E. V. Levchenko, T. Ahmed, and A. V. Evteev, Acta Mater. 136, 74 (2017).

    Article  CAS  ADS  Google Scholar 

  14. G. M. Poletaev, Y. V. Bebikhov, and A. S. Semenov, Mater. Chem. Phys. 309, 128358 (2023).

    Article  CAS  Google Scholar 

  15. G. Poletaev, Y. Gafner, S. Gafner, Y. Bebikhov, and A. Semenov, Metals 13, 1664 (2023).

    Article  CAS  Google Scholar 

  16. Y. Gafner, S. Gafner, L. Redel, and G. Poletaev, J. Nanopart. Res. 25, 205 (2023).

    Article  CAS  ADS  Google Scholar 

  17. M. I. Mendelev, F. Zhang, H. Song, Y. Sun, C. Z. Wang, and K. M. Ho, J. Chem. Phys. 148, 214705 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. H. Y. Zhang, F. Liu, Y. Yang, and D. Y. Sun, Sci. Rep. 7, 10241 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. M. I. Mendelev, M. J. Rahman, J. J. Hoyt, and M. Asta, Model. Simul. Mater. Sci. Eng. 18, 074002 (2010).

    Article  ADS  Google Scholar 

  20. D. Y. Sun, M. Asta, and J. J. Hoyt, Phys. Rev. B 69, 024108 (2004).

    Article  ADS  Google Scholar 

  21. W.-L. Chan, R. S. Averback, D. G. Cahill, and Y. Ashkenazy, Phys. Rev. Lett. 102, 095701 (2009).

    Article  PubMed  ADS  Google Scholar 

  22. G. Sun, J. Xu, and P. Harrowell, Nat. Mater. 17, 881 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, O. N. Koroleva, and A. V. Mazhukin, Math. Models Comput. Simul. 9, 448 (2017).

    Article  MathSciNet  Google Scholar 

  24. B. M. Drapkin, Fiz. Met. Metalloved., No. 7, 58 (1992).

  25. D. A. Molodov, B. B. Straumal, and L. S. Shvindlerman, Scr. Metall. 18, 207 (1984).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Poletaev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, G.M., Rakitin, R.Y. A Molecular Dynamics Study of the Influence of Elastic Strain on the Intensity of Mutual Diffusion at a Solid–Liquid Contact of Ni and Al. Tech. Phys. Lett. 49, 123–127 (2023). https://doi.org/10.1134/S1063785023700086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785023700086

Keywords:

Navigation