Skip to main content
Log in

Electronic Beam Control and Frequency Scanning of a Graphene Antenna Array in the Terahertz and Far-IR Frequency Ranges

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The purpose of this study is to model the characteristics (scattering matrix element |S11| and 2D and 3D radiation patterns (RPs)) of phased-array antennas (PAAs) composed of graphene-based nanoribbon elements with different numbers of emitters (N = 16, 64, and 256) and analyze their controllability under variable chemical potential (application of an external electric field) in the terahertz and far-IR frequency ranges using the CST Studio Suite 2021 software package. The characteristics (scattering matrix and 2D and 3D RPs) of a graphene antenna and a PAA composed of graphene nanoribbon elements with a different number of emitters (N = 16, 64, and 256) and the controllability of the PAA depending on the chemical potential (µc = 0.3, 0.7, and 1 eV) in the frequency range f = 6–40 THz are simulated using the CST Studio Suite 2021 software. As follows from the electrodynamic simulation results, a change in the graphene chemical potential leads to changes in the PAA characteristics (half-power main lobe width \({{\Theta }_{{0.5}}}\), its amplitude, side-lobe level, direction of the RP main lobe, and operating frequencies). Phased-array antennas composed of rectangular graphene nanoribbon elements can be electrically controlled with frequency scanning by changing chemical potential µc (by applying an external electric field) in the terahertz, far-IR, and mid-IR frequency ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. B. Sedeh, M. M. Salary, and H. Mosallaei, IEEE Access 8, 185919 (2020). https://doi.org/10.1109/ACCESS.2020.3030200

    Article  Google Scholar 

  2. G. S. Makeeva and O. A. Golovanov, Mathematical Modeling of Electronically Controlled Devices in the Terahertz Range Based on Graphene and Carbon Nanotubes (Penz. Gos. Univ., Penza, 2018) [in Russian].

    Google Scholar 

  3. D. Saeedkia, Handbook of Terahertz Technology for Imaging, Sensing and Communications (Elsevier, Amsterdam, 2013).

    Book  Google Scholar 

  4. W. L. Chan, J. Deibel, and D. M. Mittleman, Rep. Prog. Phys. 70, 1325 (2007).

    Article  ADS  Google Scholar 

  5. P. H. Siegel, IEEE Trans. Microwave Theory Technol. 52, 2438 (2004).

    Article  ADS  Google Scholar 

  6. D. Mittleman, Sensing with Terahertz Radiation, Vol. 85 of Springer Series in Optical Sciences (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-540-45601-8

  7. S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, Phys. Med. Biol. 46 (9), R101 (2001).

    Article  ADS  Google Scholar 

  8. T. Globus, D. Woolard, T. Khromova, T. Crowe, M. Bykhovskaia, B. Gelmont, J. Hesler, and A. Samuels, J. Biol. Phys. 29, 89 (2003).

    Article  Google Scholar 

  9. P. Ren, L. Jiang, and P. Li, IEEE J. Antennas Propag. 3, 324 (2022) https://doi.org/10.1109/OJAP.2022.3158203

    Article  Google Scholar 

  10. H. Taghvaee et al., IEEE Vehic. Technol. Mag. 17 (2), 16 (2022). https://doi.org/10.1109/MVT.2022.3155905

    Article  Google Scholar 

  11. Ch. Zeng et al., Opto-Electron. Adv. 5, 200098 (2022). https://doi.org/10.29026/oea.2022.200098

    Article  Google Scholar 

  12. Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo, Appl. Phys. Lett. 89, 203107 (2006).

    Article  ADS  Google Scholar 

  13. K. Niu, P. Li, Z. Huang, L. J. Jiang, and H. Bagci, IEEE J. Multiscale Multiphys. Comput. Tech. 5, 44 (2020). https://doi.org/10.1109/JMMCT.2020.2983336

    Article  Google Scholar 

  14. A.M. Lerer, G. S. Makeeva, and V. V. Cherepanov, in Proceedings of the 2022 International Conference on Actual Problems of Electron Devices Engineering (APEDE), Saratov, Russia, 2022, p. 62.

  15. Y. Luo et al., IEEE Access 7, 30802 (2019). https://doi.org/10.1109/ACCESS.2019.2903135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. N. Nefedov or G. S. Makeeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nefedov, N.N., Makeeva, G.S. Electronic Beam Control and Frequency Scanning of a Graphene Antenna Array in the Terahertz and Far-IR Frequency Ranges. Tech. Phys. Lett. 49, 37–42 (2023). https://doi.org/10.1134/S1063785023040028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785023040028

Keywords:

Navigation