Skip to main content
Log in

Modeling Threshold Effects of Rapid Collapse and Devastating Invasion Outbreaks in Biophysical Systems

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A methodology for hybrid computational modeling for special crisis cases is developed. Extreme phenomena and transient processes occurring suddenly in various biophysical systems are explored. The methods of mathematical biophysics require flexible expansion due to situationally activated intense influencing factors, which has been demonstrated well by the COVID-19 pandemic with the effects of virus superspreading and the instant launch of new COVID waves. Several economically important and hard-to-predict extreme biophysical processes with very rapidly changing evolutionary stages are compared. A classic example of a phenomenon disrupting the functioning of a biophysical system is a rapid invasion outbreak. Stages of the invasion process pass beyond the framework of the evolutionarily established regulatory principles in a short time interval and, therefore, can have a devastating effect. The feedback principle in biocybernetics leads to a scenario in which the rapid outbreak stage is followed by the effect of a deep crisis, both for an aggressive invader and its biophysical environment. A local population can die. Other sudden crises are provoked by an incorrectly regulated algorithm for influencing populations that are valuable for the economy. In this study, a previously discussed method for organizing hybrid computational structures on the basis of differential equations is developed. The events of switching the forms of equations are found by calculating auxiliary biophysical indicators that specify the moments of redefinitions for changing the stages of the investigated process. An advanced version of a hybrid structure and model scenarios for the collapse effect are presented. Logical errors in estimating the nonlinear dynamics with expert regulation of the impact on a biophysical system are demonstrated. Using an alternative set of predicates, a simulation analysis of launching an invasive outbreak of the population for a dangerous alien invader violating biophysical equilibrium is carried out. The scenario singles out the invasion stages at which measures for controlling an alien species are efficient before an active invader destroyed the environmental resources like Lymantria dispar invasion in Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. Y. Perevaryukha, Tech. Phys. 67, 651 (2022). https://doi.org/10.1134/S1063784222090043

    Article  Google Scholar 

  2. A. Y. Perevaryukha, Tech. Phys. 67, 523 (2022). https://doi.org/10.1134/S1063784222070088

    Article  Google Scholar 

  3. A. Y. Perevaryukha, Tech. Phys. Lett. 48, 268 (2022). https://doi.org/10.1134/S1063785022090048

    Article  ADS  Google Scholar 

  4. I. V. Trofimova, A. Yu. Perevaryukha, and A. B. Manvelova, Tech. Phys. Lett. 48, 305 (2022). https://doi.org/10.1134/S1063785022110025

    Article  ADS  Google Scholar 

  5. A. V. Leonov, O. V. Chicherina, and L. V. Semenyak, Water Resour. 38, 774 (2011). https://doi.org/10.1134/S0097807811040075

    Article  Google Scholar 

  6. D. I. Kryuchkov and A. G. Zalazinskii, Vestn. Komp’yut. Inform. Tekhnol., No. 9, 22 (2013).

  7. A. Y. Perevaryukha, Tech. Phys. Lett. 49 (2023). https://doi.org/10.1134/S1063785023010054

  8. E. N. Brooks and J. E. Powers, ICES J. Marine Sci. 64, 413 (2007).

    Article  Google Scholar 

  9. C. Jørgensen and E. Holt, J. Sea Res. 75, 8 (2013).

    Article  ADS  Google Scholar 

  10. M. V. Forental’, Vestn. Komp’yut. Inform. Tekhnol., No. 12 (66), 29 (2009).

  11. V. V. Mikhailov, A. Yu. Perevaryukha, and Yu. S. Reshetnikov, Inform.-Upr. Sist., No. 4 (95), 31 (2018). https://doi.org/10.31799/1684-8853-2018-4-31-38

  12. A. F. Evans and K. Collis, Trans. Am. Fisher. Soc. 143, 899 (2014).

    Article  Google Scholar 

  13. D. Costa and A. Almeida, Zoologia 35 (2018).

  14. W. Ricker, J. Fisher. Res. Board. 11, 559 (1954).

    Google Scholar 

  15. P. V. Veshchev, G. I. Guteneva, and R. S. Mukhanova, Russ. J. Ecol. 43, 142 (2012). https://doi.org/10.1134/S1067413612020154

    Article  Google Scholar 

  16. J. Roughgarden and F. Smith, Proc. Natl. Acad. Sci. U. S. A. 93, 5078 (1996).

    Article  ADS  Google Scholar 

  17. D. Singer, SIAM J. Appl. Math. 35, 260 (1978).

    Article  MathSciNet  Google Scholar 

  18. M. J. Feigenbaum, Commun. Math. Phys. 77, 65 (1980).

    Article  ADS  Google Scholar 

  19. J. Guckenheimer, Commun. Math. Phys. 70, 133 (1979).

    Article  ADS  Google Scholar 

  20. A. A. G. Hall et al., Agricult. Forest Entomol. 17, 292 (2015).

    Article  Google Scholar 

  21. G. H. Walter and R. Hengeveld, Autecology: Organisms, Interactions and Environmental Dynamics (CRC, Boca Raton, FL, 2014).

    Book  Google Scholar 

  22. M. P. Hill, in Biological Invasions in South Africa, Vol. 14 of Invading Nature - Springer Series in Invasion Ecology (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-32394-3_19

  23. A. Yu. Perevaryukha, J. Comput. Syst. Sci. Int. 50, 491 (2011). https://doi.org/10.1134/S1064230711010151

    Article  MathSciNet  Google Scholar 

  24. A. Yu. Perevaryukha, Cybern. Syst. Anal. 52, 623 (2016). https://doi.org/10.1007/s10559-016-9864-8

    Article  MathSciNet  Google Scholar 

  25. A. Y. Perevaryukha, Tech. Phys. Lett. 49 (2023). https://doi.org/10.1134/S1063785023010042

  26. T. N. Solov’eva, Inf.-Upr. Sist., No. 4 (83), 60 (2016). https://doi.org/10.15217/issn1684-8853.2016.4.60

  27. A. Yu. Perevaryukha, Biophysics 61, 334 (2016). https://doi.org/10.1134/S0006350916020147

    Article  Google Scholar 

  28. R. Abbasov, R. Karimov, and N. Jafarova, in Ecosystem Services in Azerbaijan (Springer, Cham, 2022). https://doi.org/10.1007/978-3-031-08770-7_1

  29. A. Sukhinov, Yu. Belova, A. Nikitina, and V. Sidorya-kina, Mathematics 10, 2092 (2022). https://doi.org/10.3390/math10122092

    Article  Google Scholar 

  30. V. V. Mikhailov and A. V. Spesivtsev, in Intelligent Distributed Computing XIII, Proceedings of the International Symposium IDC 2019, Vol. 868 of Studies in Computational Intelligence (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-32258-8_53

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 23-21-00339, “Development of Methods for Scenario Modeling of Extreme Invasive Processes in Ecosystems Taking into Account Counteracting Factors on the Basis of Dynamically Redefinable Computational Structures,” project leader A.Yu. Perevaryukha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Perevaryukha.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

Translated by E. Bondareva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevaryukha, A.Y. Modeling Threshold Effects of Rapid Collapse and Devastating Invasion Outbreaks in Biophysical Systems. Tech. Phys. Lett. 49, 43–54 (2023). https://doi.org/10.1134/S106378502303001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378502303001X

Keywords:

Navigation