Skip to main content
Log in

Charge Carrier Localization in InAs Self-Organized Quantum Dots

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We considered the problem of localization of electrons and holes taking for instance the pyramidal InAs quantum dots in GaAs. The problem of quantum mechanics was solved for the localizing potential taking into account the geometry, chemical composition and built-in fields of the mechanical stress and strain. We found that the strongest localization of both types of charge carriers can be achieved if the ratio of the pyramid height to its base is about 0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Zh. I. Alferov, FTP, 32 (1), 3 (1998). [Zh. I. Alferov, Semiconductors, 32 (1), 1 (1998). https://doi.org/10.1134/1.1187350

    CAS  Google Scholar 

  2. M. Bayer, Ann. Phys. (Berlin), 531, 1900039 (2019). https://doi.org/10.1002/andp.201900039

    Article  CAS  Google Scholar 

  3. I. N. Stranski, L. Krastanow, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse IIb. Akad. Wiss. (Wien), 146, 797 (1938).

    CAS  Google Scholar 

  4. S. Adachi, Physical properties of IIIV semiconductor compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (John Wiley & Sons, N.Y., 1992).

    Book  Google Scholar 

  5. K. E. Sautter, K. D. Vallejo, P. J. Simmonds, J. Appl. Phys., 128, 031101 (2020). https://doi.org/10.1063/5.0012066

    Article  ADS  CAS  Google Scholar 

  6. S. Ruvimov, P. Werner, K. Scheerschmidt, U. Gosele, J. Heydenreich, U. Richter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, P. S. Kop’ev, Zh. I. Alferov, Phys. Rev. B, 51, 14766 (1995). https://doi.org/10.1103/PhysRevB.51.14766

    Article  ADS  CAS  Google Scholar 

  7. V. N. Nevedomskii, N. A. Bert, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, Semiconductors, 43 (12), 1617 (2009). https://doi.org/10.1134/S1063782609120082

    Article  ADS  CAS  Google Scholar 

  8. N. Cherkashin, S. Reboh, M. J. Hytch, A. Claverie, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, V. V. Chaldyshev, Appl. Phys. Lett., 102, 173115 (2013). https://doi.org/10.1063/1.4804380

    Article  ADS  CAS  Google Scholar 

  9. I. Daruka, J. Tersoff, A.-L. Barabasi, Phys. Rev. Lett., 82, 2753 (1999). https://doi.org/10.1103/PhysRevLett.82.2753

    Article  ADS  CAS  Google Scholar 

  10. P. Kratzer, Q. K. K. Liu, P. Acosta-Diaz, C. Manzano, G. Costantini, R. Songmuang, A. Rastelli, O. G. Schmidt, K. Kern, Phys. Rev. B, 73, 205347 (2006). https://doi.org/10.1103/PhysRevB.73.205347

    Article  ADS  CAS  Google Scholar 

  11. A. Kosarev, V. V. Chaldyshev, Appl. Phys. Lett., 117, 202103 (2020). https://doi.org/10.1063/5.0032110

    Article  ADS  CAS  Google Scholar 

  12. O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B, 59, 5688 (1999). https://doi.org/10.1103/PhysRevB.59.5688

    Article  ADS  CAS  Google Scholar 

  13. J. D. Eshelby, Proc. R. Soc. Lond. A, 241, 376 (1957). https://doi.org/10.1098/rspa.1957.0133

    Article  ADS  MathSciNet  Google Scholar 

  14. J. D. Eshelby, Proc. R. Soc. Lond. A, 252, 561 (1959). https://doi.org/10.1098/rspa.1959.0173

    Article  ADS  MathSciNet  Google Scholar 

  15. N. A. Bert, A. L. Kolesnikova, A. E. Romanov, V. V. Chaldyshev, Phys. Solid State, 44 (12), 2240 (2002). https://doi.org/10.1134/1.1529918

    Article  ADS  CAS  Google Scholar 

  16. N. A. Bert, A. L. Kolesnikova, V. N. Nevedomsky, V. V. Preobrazhenskii, M. A. Putyato, A. E. Romanov, V. M. Seleznev, B. R. Semyagin, V. V. Chaldyshev, Semiconductors, 43 (10), 1387 (2009). https://doi.org/10.1134/S1063782609100236

    Article  ADS  CAS  Google Scholar 

  17. V. V. Chaldyshev, N. A. Bert, A. L. Kolesnikova, A. E. Romanov, Phys. Rev. B, 79, 233304 (2009). https://doi.org/10.1103/PhysRevB.79.233304

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to N.A. Cherkashin and A.V. Konovalov for useful discussions. The authors are also grateful to N.A. Bert, V.N. Nevedomskiy, A.L. Kolesnikova, A.E. Romanov, V.V. Preobrazhenskiy, B.R. Semyagin, and M.A. Putyato for many years of collaboration in the study of quantum dots.

Funding

The work was supported by the Russian Foundation for Basic Research (grant 19-32-90 116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Kosarev or V. V. Chaldyshev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosarev, A.N., Chaldyshev, V.V. Charge Carrier Localization in InAs Self-Organized Quantum Dots. Tech. Phys. Lett. 49 (Suppl 4), S323–S326 (2023). https://doi.org/10.1134/S1063785023010194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785023010194

Keywords:

Navigation