Skip to main content
Log in

Periodic Generation of Submerged Jets upon Laser Heating of a Fiber Tip

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The periodic generation of submerged jets upon heating of the tip of an optical fiber with an absorbing coating by continuous laser radiation with a wavelength of 0.97 μm in water has been experimentally found. It has been shown that each jet is formed by the collapse of a gas–vapor bubble arising from the explosive boiling of water. Mechanisms of the bubble and jet formation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. A. Chernov, A. A. Pil’nik, A. A. Levin, A. S. Safarov, T. P. Adamova, and D. S. Elistratov, Int. J. Heat Mass Transfer 184, 122298 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122298

    Article  Google Scholar 

  2. M. Koch, J. M. Rosselló, C. Lechner, W. Lauterborn, and R. Mettin, Fluids 7 (1), 2 (2021). https://doi.org/10.1007/s00348-020-03075-6

    Article  ADS  Google Scholar 

  3. V. M. Chudnovskii, M. A. Guzev, V. I. Yusupov, R. V. Fursenko, and J. Okajima, Int. J. Heat Mass Transfer 173, 121250 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121250

    Article  Google Scholar 

  4. V. M. Chudnovskii and V. I. Yusupov, Tech. Phys. Lett. 46, 1024 (2020). https://doi.org/10.1134/S1063785020100211

    Article  ADS  Google Scholar 

  5. S. Fan and F. Duan, Int. J. Heat Mass Transfer 150, 119324 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119324

    Article  Google Scholar 

  6. W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, J. Appl. Phys. 95, 2952 (2004). https://doi.org/10.1063/1.1650531

    Article  ADS  Google Scholar 

  7. V. S. Cheptsov, S. I. Tsypina, N. V. Minaev, V. I. Yusupov, and B. N. Chichkov, Int. J. Bioprinting 5 (2019). https://doi.org/10.18063/ijb.v5i1.165

  8. V. Yu. Lekarev, A. M. Dymov, A. Z. Vinarov, N. I. Sorokin, V. P. Minaev, N. V. Minaev, S. I. Tsypina, and V. I. Yusupov, Appl. Sci. 10, 7480 (2020). https://doi.org/10.3390/app10217480

    Article  Google Scholar 

  9. V. M. Chudnovskii, V. I. Yusupov, A. V. Dydykin, V. I. Nevozhai, A. Y. Kisilev, S. A. Zhukov, and V. N. Bagratashvili, Quantum Electron. 47, 361 (2017). https://doi.org/10.1070/QEL16298

    Article  ADS  Google Scholar 

  10. V. M. Chudnovskii, A. A. Levin, V. I. Yusupov, M. A. Guzev, and A. A. Chernov, Int. J. Heat Mass Transfer 150, 119286 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.119286

    Article  Google Scholar 

  11. A. A. Levin, A. S. Safarov, V. M. Chudnovskii, and A. A. Chernov, Interfacial Phenom. Heat Transfer 8 (1) (2020). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2020032806

  12. A. Vogel and V. Venugopalan, Chem. Rev. 103, 577 (2003). https://doi.org/10.1021/cr010379n

    Article  Google Scholar 

  13. A. A. Chernov, A. A. Pil’nik, A. A. Levin, A. S. Safarov, T. P. Adamova, and D. S. Elistratov, Int. J. Heat Mass Transfer 184, 122298 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122298

    Article  Google Scholar 

  14. J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcia, Phys. Fluids 26, 122007 (2014). https://doi.org/10.1063/1.4904718

    Article  ADS  Google Scholar 

  15. A. V. Belikov and A. V. Skrypnik, Lasers Surg. Med. 51, 185 (2019). https://doi.org/10.1002/lsm.23006

    Article  Google Scholar 

  16. S. F. Rastopov and A. T. Sukhodol’sky, Phys. Lett. A 149, 229 (1990). https://doi.org/10.1016/0375-9601(90)90334-K

    Article  ADS  Google Scholar 

  17. V. I. Yusupov, A. N. Konovalov, V. A. Ul’yanov, and V. N. Bagratashvili, Acoust. Phys. 62, 537 (2016). https://doi.org/10.1134/S1063771016050183

    Article  ADS  Google Scholar 

  18. V. P. Minaev, N. V. Minaev, V. Yu. Bogachev, K. A. Kaperiz, D. A. Fedorov, and V. I. Yusupov, Quantum Electron. 50, 793 (2020).

    Article  ADS  Google Scholar 

  19. A. L. Gurashkin, A. A. Starostin, and P. V. Skripov, Tech. Phys. Lett. 34, 617 (2020). https://doi.org/10.1134/S106378502006019X

    Article  ADS  Google Scholar 

  20. S. B. Rutin and P. V. Skripov, Thermochim. Acta 562, 70 (2013). https://doi.org/10.1016/j.tca.2013.03.030

    Article  Google Scholar 

  21. D. L. Frost, Exp. Fluids 8, 121 (1989). https://doi.org/10.1007/BF00195785

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Russian Science Foundation (project no. 20-14-00286), and the part of the study concerning thermal cavitation was carried out within the framework of a state order to the Ministry of Science and Higher Education of the Russian Federation for the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Yusupov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusupov, V.I. Periodic Generation of Submerged Jets upon Laser Heating of a Fiber Tip. Tech. Phys. Lett. 48, 278–281 (2022). https://doi.org/10.1134/S1063785022090061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785022090061

Keywords:

Navigation