Skip to main content
Log in

Analysis of the EAM and MEAM Potentials for Modeling Localized States of the Ni3Al and Pt3Al Crystals

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Thermodynamic computer models of real alloys are based, first of all, on the choice of a particle interaction potential. The chosen potential often determines, to a great extent, the final result. The potential should numerically describe the properties of investigated materials qualitatively and as accurately as possible. The aim of this study is to analyze numerically the properties of the Ni3Al and Pt3Al crystals using the potentials obtained by the embedded-atom method (EAM). Classical EAM potentials and modified EAM (MEAM) potentials are considered with allowance for directional bonds. The lattice parameters, phonon spectra, elastic constants, and melting points of the proposed fcc intermetallics with the L12 superstructure have been calculated. The characterization of the crystals with the maximum accuracy allows one to construct realistic thermodynamic models with a required degree of reliability in studying localized states of the crystal lattices. The alloys under study find wide application, in particular, under intense external impacts. This leads to the manifestation of nonlinearity of the bonds and the formation of various localized states both in the bulk of the crystals and on their surface. In particular, solitary waves, nonlinear localized modes, and defect structures can be formed. The results obtained show that the investigated potentials describe satisfactorily the main properties and can be used to study the lattice dynamics in the bulk of a crystal. At the same time, the MEAM potentials seem preferable in studying surface effects and boundary temperature and pressure parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. S. Daw, S. M. Foiles, and M. I. Baskes, Mater. Sci. Rep. 9, 251 (1993).

    Article  Google Scholar 

  2. P. S. Volegov, R. M. Gerasimov, and R. P. Davlyatshin, Vestn. Perm. Politekh. Univ., Mekh., No. 2, 114 (2018).

  3. Hui Li, Wan Du, and Yi Liu, Acta Metall. Sin. 33, 741 (2020).

    Article  Google Scholar 

  4. Jing Shang, Fan Yang, Fan Yang, Fan Yang, and Fan Yang, Comput. Mater. Sci. 148, 200 (2018).

    Article  Google Scholar 

  5. Ning Ting Yu and Oingliang Ye Yiying, Surf. Sci. 206, 857 (1988).

    Article  Google Scholar 

  6. Y. Mishin, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B 65, 224114 (2002).

    Article  ADS  Google Scholar 

  7. P. V. Zakharov, M. D. Starostenkov, S. V. Dmitriev, N. N. Medvedev, and A. M. Eremin, J. Exp. Theor. Phys. 121, 217 (2015).

    Article  ADS  Google Scholar 

  8. M. D. Starostenkov, P. V. Zakharov, and N. N. Medvedev, Fundam. Probl. Sovrem. Materialoved. 8 (4), 40 (2011).

    Google Scholar 

  9. P. V. Zakharov, A. M. Eremin, M. D. Starostenkov, and A. V. Markidonov, Komp’yut. Issled. Model. 7, 1089 (2015).

    Google Scholar 

  10. P. V. Zakharov, E. A. Korznikova, S. V. Dmitirev, E. G. Ekomasov, and K. Zhou, Surf. Sci. 679, 1 (2019).

    Article  ADS  Google Scholar 

  11. A. I. Cherednichenko, P. V. Zakharov, M. D. Starostenkov, M. O. Sysoeva, and A. M. Eremin, Komp’yut. Issled. Model. 11, 109 (2019).

    Google Scholar 

  12. X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B 69, 144113 (2004).

    Article  ADS  Google Scholar 

  13. LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov/. Accessed April 26, 2021.

  14. https://cmse.postech.ac.kr/home_2nnmeam. Accessed April 26, 2021.

  15. F. X. Kayser and C. Stassis, Phys. Status Solidi A 64, 335 (1981).

    Article  ADS  Google Scholar 

  16. S. V. Prikhodko, H. Yang, A. J. Ardell, et al., Metall. Mater. Trans. A 30, 2403 (1999).

    Article  Google Scholar 

  17. C. L. Fu and M. H. Yoo, Mater. Chem. Phys. 32, 25 (1992).

    Article  Google Scholar 

  18. P. V. M. Rao, S. V. Suryanarayana, K. S. Murthy, and S. V. N. Naidu, J. Phys.: Condens. Matter 1, 5357 (1989).

    ADS  Google Scholar 

  19. Al–Pt Binary Phase Diagram 55–83 at % Pt. https://materials.springer.com/isp/phase-diagram/docs/c_0902708. Accessed April 26, 2021.

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 21-12-00275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Cherednichenko.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherednichenko, A.I., Zakharov, P.V., Starostenkov, M.D. et al. Analysis of the EAM and MEAM Potentials for Modeling Localized States of the Ni3Al and Pt3Al Crystals. Tech. Phys. Lett. 48, 245–249 (2022). https://doi.org/10.1134/S1063785022080065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785022080065

Keywords:

Navigation