Skip to main content
Log in

Dependence of Rate of Dielectric Removal on Cathode Shape

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The optimal shape of the ending part of a cathode for electrical-discharge machining of dielectrics, which provides an increased rate of removal of dielectrics without changing any physical and technical parameters of the discharge, is proposed in this study. It is established that the rate of removal of the material when using a cathode with a conical end is five times higher than in the case of using a cylindrical end, which is a consequence of the natural superposition of the ultrasound cavitation on pulsed discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. F. N. Leão, PhD Thesis (Univ. Nottingham, UK, 2007).

  2. I. Ayesta, B. Izquierdo, J. A. Sanchez, J. M. Ramos, S. Plaza, I. Pombo, and N. Ortega, Robot. Comput.-Integr. Manuf. 37, 273 (2016). https://doi.org/10.1016/j.rcim.2015.04.003

    Article  Google Scholar 

  3. J. Binner, M. Porter, B. Baker, J. Zou, V. Venkatachalam, V. R. Diaz, and T. S. Murthy, Int. Mater. Rev. 65, 389 (2020). https://doi.org/10.1080/09506608.2019.1652006

    Article  Google Scholar 

  4. Y. Wang, J. Phys. 1744, 022098 (2021).

    Google Scholar 

  5. H. Ganga Rao, in Applied Plastics Engineering Handbook (William Andrew, Norwich NY, 2017), p. 675.

    Google Scholar 

  6. G. S. Mann, L. P. Singh, P. Kumar, and S. Singh, J. Thermoplast. Compos. Mater. 33, 1145 (2020). https://doi.org/10.1177/0892705718816354

    Article  Google Scholar 

  7. E. Boccardi, F. E. Ciraldo, and A. R. Boccaccini, MRS Bull. 42, 226 (2017). https://doi.org/10.1557/mrs.2017.28

    Article  ADS  Google Scholar 

  8. N. M. Abbas, D. G. Solomon, and M. F. Bahari, Int. J. Machine Tools Manuf. 47, 1214 (2007). https://doi.org/10.1016/j.ijmachtools.2006.08.026

    Article  Google Scholar 

  9. S. Mohanty and B. C. Routara, Int. J. Automot. Mech. Eng. 13, 3518 (2016). https://doi.org/10.15282/ijame.13.2.2016.18.0290

    Article  Google Scholar 

  10. A. Bilal, M. P. Jahan, D. Talamona, and A. Perveen, Micromachines 10 (1), 10 (2019). https://doi.org/10.3390/mi10010010

    Article  Google Scholar 

  11. O. Flaño, I. Ayesta, B. Izquierdo, J. A. Sánchez, and J. M. Ramos, Proc. CIRP 68, 405 (2018). https://doi.org/10.1016/j.procir.2017.12.103

  12. S. Plaza, J. A. Sanchez, E. Perez, R. Gil, B. Izquierdo, N. Ortega, and I. Pombo, Precis. Eng. 38, 821 (2014). https://doi.org/10.1016/j.precisioneng.2014.04.010

    Article  Google Scholar 

  13. G. D’Urso, and C. Merla, Precis. Eng. 38, 903 (2014). https://doi.org/10.1016/j.precisioneng.2014.05.007

    Article  Google Scholar 

  14. N. Pellicer, J. Ciurana, and J. Delgado, J. Intell. Manuf. 22, 575 (2011). https://doi.org/10.1007/s10845-009-0320-8

    Article  Google Scholar 

  15. E. Bassoli, L. Denti, A. Gatto, and L. Iuliano, J. Adv. Manuf. Technol. 86, 2329 (2016). https://doi.org/10.1007/s00170-016-8339-4

    Article  Google Scholar 

  16. P. V. Syakhovich, in Engineering and Pedagogical Education in the 21st Century, Collection of Articles, Ed. by S. A. Ivashchenko (BNTU, Minsk, 2017), Part 1, p. 207 [in Russian].

  17. A. V. Zhurin, Extended Abstract of Cand. Sci. Dissertation (Tula State Univ., Tula, 2005).

  18. Y. H. Jeong and B. K. Min, Int. J. Mach. Tools Manuf. 47, 1817 (2007). https://doi.org/10.1016/j.ijmachtools.2007.04.011

    Article  Google Scholar 

  19. A. A. Zaripov, Extended Abstract of Doctoral Dissertation (Inst. Ion-Plasma Laser Technol. Acad. Sci. Uzbekistan, Tashkent, 2019).

  20. E. T. Abdukarimov, A. S. Mirkarimov, and A. A. Zaripov, Surf. Eng. Appl. Electrochem. 43 (2), 77 (2007). https://doi.org/10.3103/S1068375507020019

    Article  Google Scholar 

  21. F. Pahlevani and V. Sahajwalla, J. Cleaner Prod. 227, 119 (2019). https://doi.org/10.1016/j.jclepro.2019.04.152

    Article  Google Scholar 

  22. J. L. Thomason, Composites, Part A 127, 105619 (2019). https://doi.org/10.1016/j.compositesa.2019.105619

    Article  Google Scholar 

  23. N. E. Opiok, Yu. V. Vit’ko, Zh. A. Mrochek, and Yu. I. Susha, in Modern Technologies and Education, Proceedings of the International Conference, Ed. by A. M. Malyarevich (BNTU, Minsk, 2020), Part 1, p. 60.

  24. Q. Liu, Q. Zhang, G. Zhu, K. Wang, J. Zhang, and C. Dong, Mater. Manuf. Process. 31, 391 (2016). https://doi.org/10.1080/10426914.2015.1059448

    Article  Google Scholar 

  25. A. Zaripov and K. Ashurov, Elektron. Obrab. Mater. 50 (2), 105 (2014).

    Google Scholar 

  26. A. A. Zaripov and K. B. Ashurov, Surf. Eng. Appl. Electrochem. 47, 197 (2011). https://doi.org/10.3103/S1068375511030021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zaripov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaripov, A.A., Ashurov, K.B. Dependence of Rate of Dielectric Removal on Cathode Shape. Tech. Phys. Lett. 48, 153–155 (2022). https://doi.org/10.1134/S1063785022040162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785022040162

Keywords:

Navigation