Skip to main content
Log in

Detection of Subterahertz Oscillations Using an Antiferromagnet/Heavy-Metal Heterostructure

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A model of a detector of subterahertz electromagnetic waves based on an array of heterostructures containing an antiferromagnet and a heavy metal has been studied. It is shown that the operating frequency of the detector can be tuned by a dc magnetic field applied along the easy magnetization axis of an antiferromagnet. The dependence of the rectified voltage on the frequency of an external electromagnetic wave in different dc magnetic fields is resonant, and an increase in the dc magnetic field leads to an increase in the resonance peak. It is demonstrated that the use of a comb-shaped antiferromagnetic array makes it possible to increase the rectified output voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018). https://doi.org/10.1103/RevModPhys.90.015005

    Article  ADS  Google Scholar 

  2. F. Sizov and A. Rogalski, Prog. Quantum Electron. 34, 278 (2010). https://doi.org/10.1016/j.pquantelec.2010.06.002

    Article  ADS  Google Scholar 

  3. B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002). https://doi.org/10.1038/nmat708

    Article  ADS  Google Scholar 

  4. S. A. Nikitov, A. R. Safin, D. V. Kalyabin, A. V. Sadovnikov, E. N. Beginin, M. V. Logunov, M. A. Morozova, S. A. Odintsov, S. A. Osokin, A. Yu. Sharaevskaya, Yu. P. Sharaevskii, and A. I. Kirilyuk, Phys. Usp. 63, 945 (2020). https://doi.org/10.3367/UFNe.2019.07.038609

    Article  ADS  Google Scholar 

  5. A. R. Safin, S. A. Nikitov, A. I. Kirilyuk, D. V. Kalyabin, A. V. Sadovnikov, P. A. Stremoukhov, M. V. Logunov, and P. A. Popov, J. Exp. Theor. Phys. 131, 71 (2020). https://doi.org/10.1134/S1063776120070110

    Article  ADS  Google Scholar 

  6. R. Khymyn, V. Tiberkevich, and A. Slavin, AIP Adv. 7, 055931 (2017). https://doi.org/10.1063/1.4977974

    Article  ADS  Google Scholar 

  7. A. R. Safin, E. E. Kozlova, D. V. Kalyabin, and S. A. Nikitov, Tech. Phys. Lett. 48 (2021, in press).

  8. O. Gomonay, T. Jungwirth, and J. Sinova, Phys. Rev. B 98, 104430 (2018). https://doi.org/10.1103/PhysRevB.98.104430

    Article  ADS  Google Scholar 

  9. A. Safin, V. Puliafito, M. Carpentieri, G. Finocchio, S. Nikitov, P. Stremoukhov, A. Kirilyuk, V. Tyberkevych, and A. Slavin, Appl. Phys. Lett. 117, 222411 (2020). https://doi.org/10.1063/5.0031053

    Article  ADS  Google Scholar 

  10. A. K. Zvezdin, JETP Lett. 29, 553 (1979).

    ADS  Google Scholar 

  11. I. V. Baryakhtar and B. A. Ivanov, Sov. J. Low Temp. Phys. 5, 759 (1979).

    Google Scholar 

  12. A. F. Andreev and V. I. Marchenko, Sov. Phys. Usp. 23, 21 (1980). https://doi.org/10.1070/pu1980v023n01abeh004859

    Article  ADS  Google Scholar 

  13. J. Li, C. B. Wilson, R. Cheng, M. Lohmann, M. Kavand, W. Yuan, M. Aldosary, N. Agladze, P. Wei, M. S. Sherwin, and J. Shi, Nature (London, U.K.) 578, 70 (2020). https://doi.org/10.1038/s41586-020-1950-4

    Article  ADS  Google Scholar 

  14. P. Vaidya, S. Morley, J. van Tol, Y. Liu, R. Cheng, A. Brataas, D. Lederman, and E. del Barco, Science (Washington, DC, U. S.) 368, 160 (2020). https://doi.org/10.1126/science.aaz4247

    Article  ADS  Google Scholar 

  15. A. B. Ustinov and G. Srinivasan, Appl. Phys. Lett. 93, 142503 (2008). https://doi.org/10.1063/1.2996585

    Article  ADS  Google Scholar 

  16. A. B. Ustinov, A. S. Tatarenko, G. Srinivasan, and A. M. Balbashov, J. Appl. Phys. 105, 023908 (2009). https://doi.org/10.1063/1.3067759

    Article  ADS  Google Scholar 

  17. I. Lisenkov, R. Khymyn, J. Åkerman, N. Sun, and B. Ivanov, Phys. Rev. B 100, 100409(R) (2019). https://doi.org/10.1103/PhysRevB.100.100409

  18. B. Divinskiy, G. Chen, S. Urazhdin, S. Demokritov, and V. Demidov, Phys. Rev. Appl. 14, 044016 (2020). https://doi.org/10.1103/PhysRevApplied.14.044016

    Article  ADS  Google Scholar 

  19. J. Clarke, G. Hoffer, P. Richards, and N. H. Yeh, J. Appl. Phys. 48, 4865 (1977). https://doi.org/10.1063/1.323612

    Article  ADS  Google Scholar 

  20. M. Kenyon, P. K. Day, C. M. Bradford, J. J. Bock, and H. G. Leduc, J. Low Temp. Phys. 151, 112 (2008). https://doi.org/10.1007/S10909-007-9630-4

    Article  ADS  Google Scholar 

Download references

Funding

This study was carried out within the framework of the project “Development of Signal Forming, Receiving, and Processing Devices Based on Magnetic Nanostructures” and supported by a grant of National Research University “Moscow Power Engineering Institute” for the implementation of the research programs “Energy,” “Electronics, Radio Engineering, and IT,” and “Technologies 4.0 for Industry and Robotics” in 2020−2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Kozlova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, E.E., Safin, A.R. Detection of Subterahertz Oscillations Using an Antiferromagnet/Heavy-Metal Heterostructure. Tech. Phys. Lett. 48, 128–132 (2022). https://doi.org/10.1134/S1063785022040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785022040095

Keywords:

Navigation