Skip to main content
Log in

The Dynamics and Nonequilibrium Ionic Composition of a Highly Ionized Plasma Сreated by Interaction of a High-Power Laser-Radiation Pulse with a Cylindrical Plasma Target

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Based on the results of numerical simulation using a nonstationary one-dimensional two-temperature radiation hydrodynamic model, the main physical processes have been analyzed that govern the formation of cylindrical plasma bunches with a nonequilibrium ionic composition containing ions of high ionization multiplicity under laser intensities of QL ≤ 1014 W/cm2 and energies of EL ~ 10 J/cm. The work is aimed at the creation of active media for lasers generating in the extreme ultraviolet and soft X-ray spectral ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Elton, X-Ray Lasers (Elsevier, New York, 1990).

    Google Scholar 

  2. V. I. Derzhiev, A. G. Zhidkov, and S. I. Yakovlenko, Radiation of Ions in a Nonequilibrium Dense Plasma (Energoatomizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  3. A. V. Borovskiii and A. L. Galkin, Laser Physics: X-ray Lasers, Ultrashort Pulses, High-Power Laser Systems (IzdAt, 1995) [in Russian].

    Google Scholar 

  4. D. T. Attwood, Soft X-Ray and Extreme Ultraviolet Radiation: Principles and Application (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  5. J. Nilsen, in Proceedings of the International Conference on X-Ray Lasers 2020, Proc. SPIE 11886, 1188604 (2021). https://doi.org/10.1117/12.2593255

    Article  Google Scholar 

  6. H. Daido, Rep. Prog. Phys. 65, 1513 (2002).

    Article  ADS  Google Scholar 

  7. S. Suckewer and P. Jaegle, Laser Phys. Lett. 6 (6), 411 (2009).

    Article  Google Scholar 

  8. I. A. Artyukov, V. A. Burtsev, R. M. Feshechenko, and N. V. Kalinin, Russ. Laser Res. 41 (4), 424 (2020).

    Article  Google Scholar 

  9. V. A. Burtsev and N. V. Kalinin, Tech. Phys. 59, 1310 (2014).

    Article  Google Scholar 

  10. E. V. Babarskov, V. I. Derzhiev, V. V. Evstigneev, and S. I. Yakovlenko, Sov. J. Quantum Electron. 11, 1306 (1981).

    Article  ADS  Google Scholar 

  11. A. V. Vinogradov and V. N. Shlyaptsev, Sov. J. Quantum Electron. 17, 1 (1987).

    Article  ADS  Google Scholar 

  12. K. Brueckner and S. Jorna, Laser Driven Fusion (KMS Fusion Inc., Ann Arbor, MI, 1973).

    Book  Google Scholar 

  13. P. P. Volosevich, L. M. Degtyarev, K. I. Levanov, et al., Sov. J. Plasma Phys. 2, 491 (1976).

    ADS  Google Scholar 

  14. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Ya. Doskoch, P. A. Kuchugov, N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, J. Exp. Theor. Phys. 121, 686 (2015).

    Article  ADS  Google Scholar 

  15. O. A. Hurricane, D. Callahan, T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Doppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, et al., Nature (London, U.K.) 506, 343 (2014)

    Article  ADS  Google Scholar 

  16. C. A. Thomas, E. M. Campbell, K. L. Baker, D. T. Casey, M. Hohenberger, A. L. Kritcher, B. K. Spears, S. F. Khan, R. Nora, D. T. Woods, J. L. Milovich, R. L. Berger, D. Strozzi, D. D. Ho, D. Clark, et al., Phys. Plasmas 27, 112708 (2020)

    Article  ADS  Google Scholar 

  17. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford, 2004).

    Book  Google Scholar 

  18. D. B. Abramenko, P. S. Antsiferov, D. I. Astakhov, A. Yu. Vinokhodov, et al., Phys. Usp. 62, 304 (2019).

    Article  ADS  Google Scholar 

  19. D. A. Kim, V. G. Novikov, G. V. Dolgoleva, K. N. Koshelev, and A. D. Solomyannaya, Mat. Model. 25 (7), 89 (2013).

    Google Scholar 

  20. Yu. V. Afanas’ev, E. G. Gamalii, and V. B. Rozanov, in Theory of Heating and Compression of Low-Entropy Thermonuclear Targets, Tr. FIAN 134, 10 (1982).

  21. J. D. Huba, NRL Plasma Formulary (Naval Res. Laboratory, Washington DC, 2018).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-38-90259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Timshina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, N.V., Timshina, M.V. The Dynamics and Nonequilibrium Ionic Composition of a Highly Ionized Plasma Сreated by Interaction of a High-Power Laser-Radiation Pulse with a Cylindrical Plasma Target. Tech. Phys. Lett. 48, 119–122 (2022). https://doi.org/10.1134/S1063785022040071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785022040071

Keywords:

Navigation