Skip to main content
Log in

Using Speckle Images for Determining the Local Plastic Strains Arising at High-Cycle Fatigue of 09G2S Steel

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Plastic strains arising in the zone of fatigue crack initiation are estimated with the aid of time-averaged speckle images on a sample of 09G2S steel with two grooves 2.5 mm in radius. It is shown that the fatigue fracture appears owing to localization of irreversible processes in the region less than 1 mm and the limit value of tension plastic strains is on the order of 10–1. As an indication of fracture, it is proposed to use the fact that the normed temporal autocorrelation function of radiation intensity reduces to a negative value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. A. Tupikin, Kontrol’ Diagn., No. 11, 53 (2003).

  2. I. I. Novikov and V. A. Ermishin, Physical Mechanics of Real Materials (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  3. J. Lasar, M. Hola, and O. Cip, in Proceedings of the Conference Photo Mechanics (Delft University, Netherlands, 2015), p. 64.

  4. H. J. Gough, The Fatigue of Metals (E. Benn, London, 1926).

    Google Scholar 

  5. V. F. Terent’ev, Fatigue of Metallic Materials (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  6. Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions (Academic, New York, 2019).

    Google Scholar 

  7. S. S. Manson, Exp. Mech. 5 (7), 193 (1965).

    Article  Google Scholar 

  8. J. Schijve, Int. J. Fatigue 25, 679 (2003).

    Article  Google Scholar 

  9. R. Erf, Holographic Nondestructive Testing (Academic, New York, 1974).

    Google Scholar 

  10. E. Marom and R. K. Muller, Int. J. Nondestruct. Test. 3, 171 (1971).

    Google Scholar 

  11. V. P. Kozubenko, V. A. Potichenko, and Yu. S. Borodin, Probl. Prochn., No. 7, 103 (1989).

  12. A. P. Vladimirov, I. S. Kamantsev, V. E. Veselova, E. S. Gorkunov, and S. V. Gladkovskii, Tech. Phys. 61, 563 (2016).

    Article  Google Scholar 

  13. A. P. Vladimirov, Opt. Eng. 55 (12), 1217 (2016).

    Article  Google Scholar 

  14. A. P. Vladimirov, I. S. Kamantsev, N. A. Drukarenko, L. A. Akashev, and A. V. Druzhinin, Opt. Spectrosc. 127, 943 (2019). https://doi.org/10.1134/S0030400X19110286

    Article  ADS  Google Scholar 

  15. L. B. Zuev, V. I. Danilov, and N. M. Mnikh, Zavod. Lab. 56 (2), 90 (1990).

    Google Scholar 

  16. M. A. Sutton, J.-J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (Univ. South Carolina, Columbia, USA, 2009).

    Google Scholar 

  17. S. V. Panin, P. S. Lyubutin, and V. V. Titkov, Image Analysis in Optical Method of Deformation Assessment (Sib. Otdel. RAN, Tomsk, 2017) [in Russian].

    Google Scholar 

  18. A. Gilanyi, K. Morishita, T. Sukegawa, M. Uesaka, and K. Miya, Fusion Eng. Design 42, 485 (1998).

    Article  Google Scholar 

  19. V. A. Ermishkin, D. P. Murat, and V. V. Podbel’skii, Avtomatiz. Sovrem. Tekhnol., No. 2, 11 (2008).

  20. O. A. Plekhov, I. A. Panteleev, and V. A. Leont’ev, Fiz. Mezomekh. 12 (5), 37 (2009).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank I.S. Kamantsev for aid in performing experiments.

Funding

The work was partially supported by Decree 211 of the Russian Government, agreement no. 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Vladimirov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladimirov, A.P., Drukarenko, N.A. & Myznov, K.E. Using Speckle Images for Determining the Local Plastic Strains Arising at High-Cycle Fatigue of 09G2S Steel. Tech. Phys. Lett. 47, 777–780 (2021). https://doi.org/10.1134/S1063785021080137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021080137

Keywords:

Navigation