Skip to main content
Log in

Mechanical Properties of Epilayers of Metastable α- and ε-Ga2O3 Phases Studied by Nanoindentation

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The resistance to deformation and crack formation in epitaxial layers of metastable α- and ε(κ)‑Ga2O3 polymorphs grown on sapphire substrates has been studied by nanoindentation techniques. The epilayers of α-Ga2O3 (0001) and ε(κ)-Ga2O3 (001) polymorphs are characterized by hardness H (18.7 and 17.5 GPa) and Young’s modulus E (283.4 and 256.1 GPa), respectively. It is established that the critical stress intensity factor (characterizing the cracking resistance) for ε(κ)-Ga2O3 is K1c ∼ 0.67 MPa m1/2 and that for α-Ga2O3 is K1c ∼ 0.70 MPa m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Pearton, F. Ren, and M. Mastro, Gallium Oxide. Technology, Devices and Applications (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/C2017-0-01768-8

  2. S. Poncé and F. Giustino, Phys. Rev. Res. 2, 033102 (2020). https://doi.org/10.1103/PhysRevResearch.2.033102

    Article  Google Scholar 

  3. Y. Q. Wu, S. Gao, and H. Huang, Mater. Sci. Semicond. Proc. 71, 321 (2017). https://doi.org/10.1016/j.mssp.2017.08.019

    Article  Google Scholar 

  4. Y. Q. Wu, S. Gao, R. K. Kang, and H. Huang, J. Mater. Sci. 54, 1958 (2019). https://doi.org/10.1007/s10853-018-2978-9

    Article  ADS  Google Scholar 

  5. S. Okada, K. Kudou, and I. Higashi, Nippon Kagaku Kaishi 1991, 1426 (1991). https://doi.org/10.1246/nikkashi.1991.1426

  6. L. I. Guzilova, A. S. Grashchenko, A. I. Pechnikov, V. N. Maslov, D. V. Zav’yalov, V. L. Abdrachmanov, A. E. Romanov, and V. I. Nikolaev, Mater. Phys. Mech. 29, 166 (2016).

    Google Scholar 

  7. V. I. Nikolaev, A. V. Chikiryaka, L. I. Guzilova, and A. I. Pechnikov, Tech. Phys. Lett. 45, 1114 (2019). https://doi.org/10.1134/S1063785019110117

    Article  ADS  Google Scholar 

  8. E. G. Víllora, S. Arjoca, K. Shimamura, D. Inomata, and K. Aoki, Proc. SPIE 8987, 89871U (2017). https://doi.org/10.1117/12.2039305

    Article  Google Scholar 

  9. W. Mu, Z. Jia, Y. Yin, Q. Hu, Y. Li, B. Wu, J. Zhang, and X. Tao, J. Alloys Compd. 714, 453 (2017). https://doi.org/10.1016/j.jallcom.2017.04.185

    Article  Google Scholar 

  10. A. S. Grashchenko, S. A. Kukushkin, V. I. Nikolaev, A. V. Osipov, E. V. Osipova, and I. P. Soshnikov, Phys. Solid State 60, 852 (2018). https://doi.org/10.1134/S1063783418050104

    Article  ADS  Google Scholar 

  11. J. Zhang, H. Zhou, Y. Xu, Y. Li, and J. Shen, J. Synth. Cryst. 49, 1064 (2020).

    Google Scholar 

  12. H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, Phys. Rev. B 74, 195123 (2006). https://doi.org/10.1103/PhysRevB.74.195123

    Article  ADS  Google Scholar 

  13. F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, Inorg. Chem. 55, 12079 (2016). https://doi.org/10.1021/acs.inorgchem.6b02244

    Article  Google Scholar 

  14. A. I. Pechnikov, S. I. Stepanov, A. V. Chikiryaka, M. P. Shcheglov, M. A. Odnoblyudov, and V. I. Nikolaev, Semiconductors 53, 780 (2019). https://doi.org/10.1134/S1063782619060150

    Article  ADS  Google Scholar 

  15. S. Shapenkov, O. Vyvenko, E. Ubyivovk, O. Medvedev, G. Varygin, A. Chikiryaka, A. Pechnikov, M. Scheglov, S. Stepanov, and V. Nikolaev, Phys. Status Solidi A 217, 1900892 (2020). https://doi.org/10.1002/pssa.201900892

    Article  ADS  Google Scholar 

  16. A. C. Fischer-Cripps, Nanoindentation (Springer, Heidelberg, 2011).

    Book  Google Scholar 

  17. V. I. Nikolaev, A. I. Pechnikov, V. V. Nikolaev, M. P. Sheglov, A. V. Chikiryaka, and S. I. Stepanov, in Proceedings of the 2019 Compound Semiconductor Week CSW (IEEE, 2019), p. 1. https://doi.org/10.1109/ICIPRM.2019.8819271

  18. M. T. Laugier, J. Mater. Sci. Lett. 6, 897 (1987). https://doi.org/10.1007/BF01729862

    Article  Google Scholar 

  19. I. Yonenaga, Mater. Trans. 46, 1979 (2005). https://doi.org/10.2320/matertrans.46.1979

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed with the use of a NanoTest microhardness meter (Micro Materials Ltd.) at the Unique Facility Physics, Chemistry, and Mechanics of Crystals and Thin Films (Institute of Problems of Mechanical Engineering, St. Petersburg). The authors are also grateful to Perfect Crystals LLC (St. Petersburg) for kindly providing samples for this study.

Funding

L.I. Guzilova, P.N. Butenko, A.V. Chikiryaka, A.I. Pechnikov, and V.I. Nikolaev carried out their part of the work in the framework of the project “Fundamental Problems of Physics and Chemistry of Nanostructured and Nanocomposite Materials and Device Structures: Physical Properties of Single Crystalline and Disordered Materials,” state order no. 0040-2014-0007. A.S. Grashchenko performed his part of the work in the framework of state orders to the Institute of Problems of Mechanical Engineering, project no. АААА-А18-118012790011-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Guzilova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzilova, L.I., Grashchenko, A.S., Butenko, P.N. et al. Mechanical Properties of Epilayers of Metastable α- and ε-Ga2O3 Phases Studied by Nanoindentation. Tech. Phys. Lett. 47, 709–713 (2021). https://doi.org/10.1134/S106378502107021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378502107021X

Keywords:

Navigation