Skip to main content
Log in

Electronic Spectrum of Encapsulated Monolayers: Analytical Results

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The Green’s function method has been used to obtain the dispersion law for a monolayer sandwiched between two crystalline planes. The regimes of weak and strong interaction of the monolayer with the environment have been discussed in detail. For the graphene, hexagonal boron-nitride—metal-monolayer—silicon-carbide polytype systems, expressions for the effective electron masses have been obtained. It has been shown that, with an increase in the band gap of the SiC polytype, the effective mass decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. D. Farrusseng and A. Tuel, New J. Chem. 40, 3933 (2016). https://doi.org/10.1039/c5nj02608c

    Article  Google Scholar 

  2. K. Hu, T. Ohto, L. Chen, J. Han, M. Wakisaka, Y. Nagata, J. Fujita, and Y. Ito, ACS Energy Lett. 3, 1539 (2018). https://doi.org/10.1021/acsenergylett.8b00739

    Article  Google Scholar 

  3. C. Gao, F. Lyu, and Y. Yin, Chem. Rev. 121, 834 (2021). https://doi.org/10.1021/acs.chemrev.0c00237

    Article  Google Scholar 

  4. M. S. Stark, K. L. Kuntz, S. J. Martens, and S. C. Warren, Adv. Mater. 31, 1808213 (2019). https://doi.org/10.1002/adma.201808213

    Article  Google Scholar 

  5. M. Laipan, L. Xiang, J. Yu, B. R. Martin, R. Zhu, J. Zhu, H. He, A. Clearfield, and L. Sun, Prog. Mater. Sci. 109, 10063 (2020). https://doi.org/10.1016/j.pmatsci.2019.100631

    Article  Google Scholar 

  6. W. Zhou and P. H.-L. Sit, ACS Omega 5, 18289 (2020). https://doi.org/10.1021/acsomega.0c01950

    Article  Google Scholar 

  7. Y. Wang and V. H. Crespi, arXiv: 2011.01914.

  8. S. Yu. Davydov, Phys. Solid State 59, 1674 (2017). https://doi.org/10.1134/S1063783417080078

    Article  ADS  Google Scholar 

  9. J. Nevalaita and P. Koskinen, Phys. Rev. B 97, 035411 (2018). https://doi.org/10.1103/PhysRevB.97.035411

    Article  ADS  Google Scholar 

  10. T. Hanisch, B. Kleine, A. Ritzl, and E. Miiller-Hartmann, Ann. Phys. 4, 303 (1995). https://doi.org/10.1002/andp.19955070405

    Article  Google Scholar 

  11. S. Mammadov, J. Ristein, J. Krone, C. Raidel, M. Wanke, V. Wiesmann, F. Speck, and Th. Seyller, 2D Mater. 4, 015043 (2016). https://doi.org/10.1088/2053-1583/4/1/015043

  12. S. Yu. Davydov, Semiconductors 53, 699 (2019). https://doi.org/10.1134/S106378261905004X

    Article  ADS  Google Scholar 

  13. S. Yu. Davydov, Semiconductors 51, 217 (2017). https://doi.org/10.1134/S1063782617020051

    Article  ADS  Google Scholar 

  14. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, NY, 1996), 567 p.

  15. W. A. Harrison, The Electronic Structure and Properties of Solids (Freeman, San Francisco, CA, 1980), Chap. 20.

    Google Scholar 

  16. S. Thomas, M. S. Manju, K. M. Ajith, S. U. Lee, and M. A. Zaeem, Phys. E (Amsterdam, Neth.) 123, 114180 (2020). http://www.elsevier.com/locate/physe.

  17. S. Yu. Davydov, Phys. Solid State 60, 1865 (2018). https://doi.org/10.1134/S1063783418090081

    Article  ADS  Google Scholar 

  18. P. Moon and M. Koshino, Phys. Rev. B 90, 155406 (2014). https://doi.org/10.1103/PhysRevB.90.155406

    Article  ADS  Google Scholar 

  19. M. Koshino, New J. Phys. 17, 015014 (2015). https://doi.org/10.1088/1367-2630/17/1/015014

    Article  ADS  Google Scholar 

  20. G. J. Slotman, M. M. van Wijk, P.-L. Zhao, A. Fasolino, M. I. Katsnelson, and S. Yuan, Phys. Rev. Lett. 115, 186801 (2015). https://doi.org/10.1103/PhysRevLett.115.186801

    Article  ADS  Google Scholar 

  21. L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, et al., Nature (London, U.K.) 497, 594 (2013). https://doi.org/10.1038/nature12187

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y. Electronic Spectrum of Encapsulated Monolayers: Analytical Results. Tech. Phys. Lett. 47, 649–652 (2021). https://doi.org/10.1134/S1063785021070051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021070051

Keywords:

Navigation