Skip to main content
Log in

Gallium Diffusion Flow Direction during Deposition on the Surface with Regular Hole Arrays

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Autocalytic growth of GaAs and GaP semiconductor nanowires is frequently carried out using SiOx/Si(111) substrates with lithographically prepared hole arrays, on which Ga droplets are created by preliminary deposition in the absence of As flow. It was previously believed that the diffusion flow of gallium is directed from the mask to holes. In the present work, it has been shown that the direction of this diffusion flow can vary depending on the growth parameters. The proposed model is applicable to description of the time of droplet incubation and can explain long-term delay in the growth of droplets and nucleation of nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Zhang, G. Zheng, and C. M. Lieber, Nanowires: Building Blocks for Nanoscience and Nanotechnology (Springer, Switzerland, 2016).

    Book  Google Scholar 

  2. F. Glas, Phys. Rev. B 74, 121302(R) (2006). https://doi.org/10.1103/PhysRevB.74.121302

  3. V. G. Dubrovskii, N. V. Sibirev, X. Zhang, and R. A. Suris, Cryst. Growth Des. 10, 3949 (2010). https://doi.org/10.1021/cg100495b

    Article  Google Scholar 

  4. G. E. Cirlin, V. G. Dubrovskii, V. N. Petrov, N. K. Polyakov, N. P. Korneeva, V. N. Demidov, A. O. Golubok, S. A. Masalov, D. V. Kurochkin, O. M. Gorbenko, N. I. Komyak, V. M. Ustinov, A. Yu. Egorov, A. R. Kovsh, M. V. Maximov, et al., Semicond. Sci. Technol. 13, 1262 (1998). https://doi.org/10.1088/0268-1242/13/11/005

    Article  ADS  Google Scholar 

  5. M. H. Sun, E. S. P. Leong, A. H. Chin, C. Z. Ning, G. E. Cirlin, Yu. B. Samsonenko, V. G. Dubrovskii, L. Chuang, and C. Chang-Hasnain, Nanotechnology 21, 335705 (2010). https://doi.org/10.1088/0957-4484/21/33/335705

    Article  Google Scholar 

  6. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964). https://doi.org/10.1063/1.1753975

    Article  ADS  Google Scholar 

  7. V. G. Dubrovskii and F. Glas, in Fundamental Properties of Semiconductor Nanowires, Ed. by N. Fukata and R. Rurali (Springer, Singapore, 2021), p. 3. https://doi.org/10.1007/978-981-15-9050-4_1

    Book  Google Scholar 

  8. V. G. Dubrovskii, I. P. Soshnikov, G. E. Cirlin, A. A. Tonkikh, Yu. B. Samsonenko, N. V. Sibirev, and V. M. Ustinov, Phys. Status Solidi B 241, R30 (2004). https://doi.org/10.1002/pssb.200409042

    Article  ADS  Google Scholar 

  9. G. E. Cirlin, V. G. Dubrovskii, N. V. Sibirev, I. P. Soshnikov, Yu. B. Samsonenko, A. A. Tonkikh, and V. M. Ustinov, Semiconductors 39, 557 (2005).

    Article  ADS  Google Scholar 

  10. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta i Morral, Phys. Rev. B 77, 155326 (2008). https://doi.org/10.1103/PhysRevB.77.155326

    Article  ADS  Google Scholar 

  11. S. Plissard, G. Larrieu, X. Wallart, and P. Caroff, Nanotechnology 22, 275602 (2011). https://doi.org/10.1088/0957-4484/22/27/275602

    Article  Google Scholar 

  12. J. Vukajlovic-Plestina, W. Kim, V. G. Dubrovskii, G. Tütüncüoğlu, M. Lagier, H. Potts, M. Friedl, and A. Fontcuberta i Morral, Nano Lett. 17, 4101 (2017). https://doi.org/10.1021/acs.nanolett.7b00842

    Article  ADS  Google Scholar 

  13. M. T. Robson, V. G. Dubrovskii, and R. R. La Pierre, Nanotechnology 26, 465301 (2015). https://doi.org/10.1088/0957-4484/26/46/465301

    Article  ADS  Google Scholar 

  14. Q. Gao, V. G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li, Y. Guo, L. Fu, H. H. Tan, and C. Jagadish, Nano Lett. 16, 4361 (2016). https://doi.org/10.1021/acs.nanolett.6b01461

    Article  ADS  Google Scholar 

  15. V. G. Dubrovskii, Phys. Status Solidi B 171, 345 (1992). https://doi.org/10.1002/pssb.2221710206

    Article  ADS  Google Scholar 

  16. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990). https://doi.org/10.1103/RevModPhys.62.251

    Article  ADS  Google Scholar 

  17. P. Krogstrup, H. I. Jørgensen, E. Johnson, M. H. Madsen, C. B. Sørensen, A. Fontcuberta i Morral, M. Aagesen, J. Nygård, and F. Glas, J. Phys. D: Appl. Phys. 46, 313001 (2013). https://doi.org/10.1088/0022-3727/46/31/313001

    Article  Google Scholar 

  18. V. G. Dubrovskii and Yu. Yu. Hervieu, J. Cryst. Growth 401, 431 (2014). https://doi.org/10.1016/j.jcrysgro.2014.01.015

    Article  ADS  Google Scholar 

  19. Yu. Yu. Hervieu, J. Cryst. Growth 493, 1 (2018). https://doi.org/ j.jcrysgro.2018.04.012

  20. R. L. Schwoebel, J. Appl. Phys. 37, 3682 (1966). https://doi.org/10.1063/1.1707904

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to F. Glas, who obtained corresponding solutions in the one-dimensional case, for useful discussions.

Funding

This work was supported in part by the Russian Foundation for Basic Research, projects nos. 20-52-16301, 20-02-00351, and 18-02-40006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Dubrovskii.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovskii, V.G. Gallium Diffusion Flow Direction during Deposition on the Surface with Regular Hole Arrays. Tech. Phys. Lett. 47, 601–604 (2021). https://doi.org/10.1134/S1063785021060213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021060213

Keywords:

Navigation