Skip to main content
Log in

The Detection of High Frequency Alfven Eigenmodes in Ohmic Discharges on Spherical Tokamak Globus-M2

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

In Globus-M2 ohmic discharges with low density, by means of Mirnov coils array, magnetic field oscillations with frequencies in 1 MHz range were detected. Frequency range of these oscillations significantly exceed the range of TAE and RSAE frequencies, which were previously observed on Globus-M and Globus-M2 tokamaks, and their amplitude, contrary, turned out to be up to an order of magnitude lower. It was found that high frequency oscillations are interrelated with suprathermal electron fraction. At the same time the observed instability seems to have Alfvenic nature, since its frequency correlates well with Alfven frequency scaling. It was also found that magnetic perturbation always forms standing wave with predominantly low toroidal wavenumbers, including n = 0 structure, which makes gap (e.g. TAE) mode excitation impossible. Frequency chirping during single bursts with \(\delta \omega ~\sim ~\sqrt t \) is consistent with hole-clump model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. W. W. Heidbrink, Phys. Plasmas 15, 055501 (2008). https://doi.org/10.1063/1.2838239

    Article  ADS  Google Scholar 

  2. K.-L. Wong, Plasma Phys. Control. Fusion 41, R1 (1999). https://doi.org/10.1088/0741-3335/41/1/001

    Article  Google Scholar 

  3. V. B. Minaev, V. K. Gusev, N. V. Sakharov, V. I. Varfolomeev, N. N. Bakharev, V. A. Belyakov, E. N. Bondarchuk, P. N. Brunkov, F. V. Chernyshev, V. I. Davydenko, V. V. Dyachenko, A. A. Kavin, S. A. Khitrov, N. A. Khromov, E. O. Kiselev, et al., Nucl. Fusion 57, 066047 (2017). https://doi.org/10.1088/1741-4326/aa69e0

    Article  ADS  Google Scholar 

  4. V. K. Gusev, V. E. Golant, E. Z. Gusakov, V. V. D’yachenko, M. A. Irzak, V. B. Minaev, E. E. Mukhin, A. N. Novokhatskii, K. A. Podushnikova, G. T. Razdobarin, N. V. Sakharov, E. N. Tregubova, V. S. Uzlov, O. N. Shcherbinin, V. A. Belyakov, et al., Tech. Phys. 44, 1054 (1999). https://doi.org/10.1134/1.1259469

    Article  Google Scholar 

  5. Yu. V. Petrov, N. N. Bakharev, V. V. Bulanin, V. K. Gusev, G. S. Kurskiev, A. A. Martynovc, S. Yu. Medvedevc, V. B. Minaev, M. I. Patrova, A. V. Petrov, N. V. Sakharov, P. B. Shchegolev, A. Yu. Telnova, S. Yu. Tolstyakov, and A. Yu. Yashin, Plasma Phys. Rep. 25, 723 (2019). https://doi.org/10.1134/S1063780X19080075

    Article  ADS  Google Scholar 

  6. V. V. Bulanin, V. K. Gusev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, A. V. Petrov, M. A. Petrov, Yu. V. Petrov, A. Yu. Tel’nova, and A. Yu. Yashin, Tech. Phys. Lett. 43, 1067 (2017). https://doi.org/10.1134/S1063785017120033

    Article  ADS  Google Scholar 

  7. I. M. Balachenkov, Yu. V. Petrov, V. K. Gusev, N. N. Bakharev, V. V. Bulanin, V. I. Varfolomeev, N. S. Zhil’tsov, E. O. Kiselev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, A. V. Petrov, A. M. Ponomarenko, N. V. Sakharov, A. Yu. Tel’nova, et al., Tech. Phys. Lett. 46, 1157 (2020). https://doi.org/10.1134/S1063785020120032

    Article  ADS  Google Scholar 

  8. I. M. Balachenkov, M. I. Patrov, Yu. V. Petrov, and A. S. Tukachinsky, J. Phys.: Conf. Ser. 1400, 077016 (2019). https://doi.org/10.1088/1742-6596/1400/7/077016

    Article  Google Scholar 

  9. Z. Chang, E. D. Frederickson, S. J. Zweben, H. K. Park, R. Nazikian, E. Mazzucato, S. H. Batha, M. G. Bell, R. V. Bundy, C. E. Bush, D. S. Darrow, D. Ernst, G. Y. Fu, R. J. Hawryluk, K. W. Hill, et al., Nucl. Fusion 35, 1469 (1995). https://doi.org/10.1088/0029-5515/35/12/I07

    Article  ADS  Google Scholar 

  10. P. Helander, L.-G. Eriksson, R. J. Akers, C. Byrom, C. G. Gimblett, and M. R. Tournianski, Phys. Rev. Lett. 89, 235002 (2002). https://doi.org/10.1103/PhysRevLett.89.235002

    Article  ADS  Google Scholar 

  11. A. S. Tukachinskii, L. G. Askinazi, I. M. Balachenkov, A. A. Belokurov, D. B. Gin, N. A. Zhubr, V. A. Kornev, S. V. Lebedev, E. M. Khil’kevich, I. N. Chugunov, and A. E. Shevelev, Tech. Phys. Lett. 42, 1167 (2016). https://doi.org/10.1134/S1063785018110172

    Article  ADS  Google Scholar 

  12. T. Markovic, A. Melnikov, J. Seidl, L. Eliseev, J. Havlicek, A. Havránek, M. Hron, M. Imríšek, K. Kovarík, K. Mitošinková, J. Mlynar, R. Pánek, J. Stockel, J. Varju, V. Weinzettl, and the COMPASS Team, in Proceedings of the 44th EPS Conference on Plasma Physics (Belfast, 2017), vol. 41F, p. 5.140. http://ocs.ciemat.es/EPS2017PAP/pdf/P5.140.pdf

  13. N. Chu, Y. Sun, S. Gu, H. H. Wang, Y. J. Hu, T. H. Shi, D. L. Chen, X. Gu, K. Y. He, M. Jia, S. Y. Lin, H. Q. Liu, J. P. Qian, J. Ren, B. Shen, et al., Nucl.Fusion. 58, 104004 (2018). https://doi.org/10.1088/1741-4326/aad70c

    Article  ADS  Google Scholar 

  14. J. Wang, Y. Todo, H. Wang, and Z.-X. Wang, Nucl. Fusion 60, 112012 (2020). https://doi.org/10.1088/1741-4326/ab6c79

    Article  ADS  Google Scholar 

  15. G. I. Abdullina, L. G. Askinazi, A. A. Belokurov, N. A. Zhubr, V. A. Kornev, S. V. Krikunov, S. V. Lebedev, D. B. Razumenko, and A. S. Tukachinskii, Tech. Phys. Lett. 44, 108 (2018). https://doi.org/10.1134/S1063785018020025

    Article  Google Scholar 

  16. B. N. Breizman, P. Aleynikov, E. M. Hollmann, and M. Lehnen, Nucl. Fusion 59, 083001 (2019). https://doi.org/10.1088/1741-4326/ab1822

    Article  ADS  Google Scholar 

  17. M. K. Lilley, B. N. Breizman, and S. E. Sharapov, Phys. Plasmas 17, 092305 (2011). https://doi.org/10.1063/1.3486535

    Article  ADS  Google Scholar 

  18. S. D. Pinches, H. L. Berk, D. N. Borba, B. N. Breizman, S. Briguglio, A. Fasoli, G. Fogaccia, M. P. Gryaznevich, V. Kiptily, M. J. Mantsinen, S. E. Sharapov, D. Testa, R. G. L. Vann, G. Vlad, F. Zonca, and JET-EFDA Contributors, Plasma Phys. Control. Fusion 46 (12B), B187 (2004). https://doi.org/10.1088/0741-3335/46/12B/017

    Article  Google Scholar 

  19. A. Lvovskiy, W. W. Heidbrink, C. Paz-Soldan, D. A. Spong, A. DalMolin, N. W. Eidietis, M. Nocente, D. Shiraki, and K. E. Thome, Nucl. Fusion 59, 124004 (2019). https://doi.org/10.1088/1741-4326/ab4405

    Article  ADS  Google Scholar 

  20. V. V. Bulanin, I. M. Balachenkov, V. I. Varfolomeev, V. K. Gusev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, A. M. Ponomarenko, A. Yu. Tel’nova, P. B. Shchegolev, and A. Yu. Yashin, Tech. Phys. Lett. 47, 197 (2021). https://doi.org/10.1134/S1063785021020206

    Article  ADS  Google Scholar 

Download references

Funding

Measurements of high-frequency Alfven oscillations were supported bythe Ministry of Science and Higher Education of the Russian Federation in the fvramework of State Order in Science (project 0784-2020-0020) and experiments on low hybrid current drive were supported in the framework of project 0040-2019-0023. Measurements of basic plasma parameters were carried out on the Unique Scientific Facility “Spherical Tokamak Globus-M”, at the Federal Joint Research Center “Materials Science and Characterization in Advanced Technologies” (project ID RFMEFI62119X0021) in the Ioffe institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Balachenkov.

Ethics declarations

Authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balachenkov, I.M., Petrov, Y.V., Gusev, V.K. et al. The Detection of High Frequency Alfven Eigenmodes in Ohmic Discharges on Spherical Tokamak Globus-M2. Tech. Phys. Lett. 47, 583–588 (2021). https://doi.org/10.1134/S1063785021060171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021060171

Keywords:

Navigation