Skip to main content
Log in

The Effect of Vacancy Concentration on the Migration Rate of the Tilt Boundaries in Nickel: Molecular Dynamics Modeling

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The molecular dynamics method was used to study the effect of the vacancy concentration on the migration rate of high-angle tilt grain boundaries with misorientation axes 〈111〉 and 〈100〉 in nickel. It is shown that the dependence of the migration rate of grain boundaries on the vacancy concentration is nonmonotonic and has a maximum at a concentration of vacancies introduced at the initial stage of about 1%. With a further increase in the concentration, especially above 4%, the migration rate of such boundaries decreases as a result of dragging the boundaries by low-mobile vacancy clusters attached to it, which can no longer be sorbed by the boundary, as in the case of relatively small clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. Gottstein and L. S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed. (CRC, Boca Raton, FL, 2009).

    Book  Google Scholar 

  2. O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Metals (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  3. F. Haessner, J. Phys. Coll. 36 (S4), 345 (1975). https://doi.org/10.1051/jphyscol:1975435

    Article  Google Scholar 

  4. H. Takahashi and N. Hashimoto, Mater. Trans. 34, 1027 (1993). https://doi.org/10.2320/matertrans1989.34.1027

    Article  Google Scholar 

  5. G. Lu and N. Kioussis, Phys. Rev. B 64, 024101 (2001). https://doi.org/10.1103/PhysRevB.64.024101

    Article  ADS  Google Scholar 

  6. P. Ballo, N. Kioussis, and G. Lu, Phys. Rev. B 64, 024104 (2001). https://doi.org/10.1103/PhysRevB.64.024104

    Article  ADS  Google Scholar 

  7. Y. Estrin, G. Gottstein, E. Rabkin, and L. S. Shvindlerman, Acta Mater. 49, 673 (2001). https://doi.org/10.1016/S1359-6454(00)00344-X

    Article  ADS  Google Scholar 

  8. V. G. Sursaeva, G. Gottstein, and L. S. Shvindlerman, Scr. Mater. 116, 91 (2016). https://doi.org/10.1016/j.scriptamat.2016.01.021

    Article  Google Scholar 

  9. Y. Huang and F. J. Humphreys, Mater. Chem. Phys. 132, 166 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.018

    Article  Google Scholar 

  10. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov, R. Yu. Rakitin, and P. Ya. Tabakov, J. Exp. Theor. Phys. 128, 88 (2019). https://doi.org/10.1134/S1063776118120087

    Article  ADS  Google Scholar 

  11. G. Gottstein, D. A. Molodov, and L. S. Shvindlerman, Interface Sci. 6, 7 (1998). https://doi.org/10.1023/A:1008641617937

    Article  Google Scholar 

  12. S. G. Protasova, V. G. Sursaeva, and L. S. Shvindlerman, Phys. Solid State 1471(2003). https://doi.org/10.1134/1.1602881

  13. F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993). https://doi.org/10.1103/PhysRevB.48.22

    Article  ADS  Google Scholar 

  14. G. M. Poletaev, I. V. Zorya, R. Y. Rakitin, and M. A. Iliina, Mater. Phys. Mech. 42, 380 (2019). https://doi.org/10.18720/MPM.4242019_2

    Article  Google Scholar 

  15. G. M. Poletaev and I. V. Zorya, Tech. Phys. Lett. 46, 575 (2020). https://doi.org/10.1134/S1063785020060231

    Article  ADS  Google Scholar 

  16. D. A. Molodov, B. B. Straumal, and L. S. Shvindlerman, Scr. Met. 18, 207 (1984). https://doi.org/10.1016/0036-9748(84)90509-X

    Article  Google Scholar 

  17. Q. Zhu, S. C. Zhao, C. Deng, X. H. An, K. X. Song, S. X. Mao, and J. W. Wang, Acta Mater. 199, 42 (2020). https://doi.org/10.1016/j.actamat.2020.08.021

    Article  ADS  Google Scholar 

  18. L.-L. Niu, Q. Peng, F. Gao, Zh. Chen, Y. Zhang, and G.-H. Lu, J. Nucl. Mater. 512, 246 (2018). https://doi.org/10.1016/j.jnucmat.2018.10.014

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Poletaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, G.M., Rakitin, R.Y. The Effect of Vacancy Concentration on the Migration Rate of the Tilt Boundaries in Nickel: Molecular Dynamics Modeling. Tech. Phys. Lett. 47, 399–402 (2021). https://doi.org/10.1134/S1063785021040246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021040246

Keywords:

Navigation