Skip to main content
Log in

A Hybrid Mid-IR Photodetector Based on Semiconductor Quantum Wells

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We propose a hybrid photodetector device in which the interaction of an electromagnetic field with an electron subsystem of quantum wells is increased by the presence of SiC nanoparticles. Based on direct measurements of photoconductivity in the mid-IR range and numerical calculations using finite-difference time-domain method, it is shown that the proposed approach can increase the sensitivity of photodetector to electromagnetic radiation due to rotation of the polarization direction, including that in the near field of SiC nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Gunapala, D. Rhiger, and C. Jagadish, Advances in Infrared Photodetectors, Vol. 84 of Semiconductors and Semimetals (Academic, New York, 2011).

  2. A. Rogalski, P. Martyniuk, and M. Kopytko, Appl. Phys. Rev. 4, 031304 (2017). https://doi.org/10.1063/1.4999077

    Article  ADS  Google Scholar 

  3. B. F. Levine, J. Appl. Phys. 74, R1 (1993). https://doi.org/10.1063/1.354252

    Article  ADS  Google Scholar 

  4. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors: Physics and Applications, Vol. 126 of Springer Series in Optical Sciences (Springer, Berlin, Heidelberg, 2007).

  5. S. Bandara, S. Gunapala, J. Liu, E. Luong, J. Mumolo, W. Hong, D. Sengupta, and M. McKelvey, Appl. Phys. Lett. 72, 2427 (1998). https://doi.org/10.1063/1.121375

    Article  ADS  Google Scholar 

  6. L. B. Luo, L. H. Zeng, C. Xie, Y. Q. Yu, F. X. Liang, C. Y. Wu, L. Wang, and L. G. Hu, Sci. Rep. 4, 3914 (2014). https://doi.org/10.1038/srep03914

    Article  Google Scholar 

  7. X. Nie, H. Zhen, G. Huang, Y. Yin, S. Li, P. Chen, X. Zhou, Y. Mei, and W. Lu, Appl. Phys. Lett. 116, 161107 (2020). https://doi.org/10.1063/5.0002012

    Article  ADS  Google Scholar 

  8. I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. Ferrari, Nano Lett. 16, 3005 (2016). https://doi.org/10.1021/acs.nanolett.5b05216

    Article  ADS  Google Scholar 

  9. Y. Sasaki, Y. Nishina, M. Sato, and K. Okamura, Phys. Rev. B 40, 1762 (1989). https://doi.org/10.1103/PhysRevB.40.1762

    Article  ADS  Google Scholar 

  10. R. Geick, C. Perry, and G. Rupprecht, Phys. Rev. 146, 543 (1966). https://doi.org/10.1103/PhysRev.146.543

    Article  ADS  Google Scholar 

  11. V. S. Krivobok, D. A. Pashkeev, D. A. Litvinov, L. N. Grigor’eva, and S. A. Kolosov, Tech. Phys. Lett. 46, 256 (2020). https://doi.org/10.1134/S1063785020030256

    Article  ADS  Google Scholar 

  12. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, London, 2005).

    MATH  Google Scholar 

  13. https://meep.readthedocs.io.

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 18-29-20122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Grigoreva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by P. Pozdeev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivobok, V.S., Kondorskiy, A.D., Pashkeev, D.A. et al. A Hybrid Mid-IR Photodetector Based on Semiconductor Quantum Wells. Tech. Phys. Lett. 47, 388–391 (2021). https://doi.org/10.1134/S1063785021040210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021040210

Keywords:

Navigation